
Deriving Practical Implementations of
First-Class Functions

Zachary J. Sullivan

February 19, 2021, University of Oregon

1

Gap of theory and practice

The λ-calculus is the foundation of functional programming
languages like Ocaml and Haskell.

λ-calculus

(λf . f (f x)) (λx . x)

Vax Machine code

AP Unwind :
movl Head(r0), r0
movl r0,−(%EP)
movl (r0), r1
jmp ∗0 Unwind(r1)

What are the intermediate theories between
these?

2

Gap of theory and practice

The λ-calculus is the foundation of functional programming
languages like Ocaml and Haskell.

λ-calculus

(λf . f (f x)) (λx . x)

Vax Machine code

AP Unwind :
movl Head(r0), r0
movl r0,−(%EP)
movl (r0), r1
jmp ∗0 Unwind(r1)

What are the intermediate theories between
these?

2

Gap of theory and practice

The λ-calculus is the foundation of functional programming
languages like Ocaml and Haskell.

λ-calculus

(λf . f (f x)) (λx . x)

Vax Machine code

AP Unwind :
movl Head(r0), r0
movl r0,−(%EP)
movl (r0), r1
jmp ∗0 Unwind(r1)

What are the intermediate theories between
these?

2

Gap of theory and practice

The λ-calculus is the foundation of functional programming
languages like Ocaml and Haskell.

λ-calculus

(λf . f (f x)) (λx . x)

Vax Machine code

AP Unwind :
movl Head(r0), r0
movl r0,−(%EP)
movl (r0), r1
jmp ∗0 Unwind(r1)

What are the intermediate theories between
these?

2

Gap of theory and practice

The λ-calculus is the foundation of functional programming
languages like Ocaml and Haskell.

λ-calculus

(λf . f (f x)) (λx . x)

Vax Machine code

AP Unwind :
movl Head(r0), r0
movl r0,−(%EP)
movl (r0), r1
jmp ∗0 Unwind(r1)

What are the intermediate theories between
these?

2

Intermediate theories

Reduction Theory

Operational Semantics

Combinators and their Machines

Abstract Machines

Compilation through Intermediate Languages

3

Intermediate theories

Reduction Theory

Operational Semantics

Combinators and their Machines

Abstract Machines

Compilation through Intermediate Languages

3

Intermediate theories

Reduction Theory

Operational Semantics

Combinators and their Machines

Abstract Machines

Compilation through Intermediate Languages

3

Intermediate theories

Reduction Theory

Operational Semantics

Combinators and their Machines

Abstract Machines

Compilation through Intermediate Languages

3

Intermediate theories

Reduction Theory

Operational Semantics

Combinators and their Machines

Abstract Machines

Compilation through Intermediate Languages

3

Schism of Evaluation Strategy

Implementations can be mostly divided based on evaluation
strategy:

Call-by-value

Scheme

SML

Ocaml

Call-by-need

LazyML

Miranda

Haskell

Have we been duplicating work?

4

Schism of Evaluation Strategy

Implementations can be mostly divided based on evaluation
strategy:

Call-by-value

Scheme

SML

Ocaml

Call-by-need

LazyML

Miranda

Haskell

Have we been duplicating work?

4

Schism of Evaluation Strategy

Implementations can be mostly divided based on evaluation
strategy:

Call-by-value

Scheme

SML

Ocaml

Call-by-need

LazyML

Miranda

Haskell

Have we been duplicating work?

4

Schism of Evaluation Strategy

Implementations can be mostly divided based on evaluation
strategy:

Call-by-value

Scheme

SML

Ocaml

Call-by-need

LazyML

Miranda

Haskell

Have we been duplicating work?

4

Schism of Evaluation Strategy

Implementations can be mostly divided based on evaluation
strategy:

Call-by-value

Scheme

SML

Ocaml

Call-by-need

LazyML

Miranda

Haskell

Have we been duplicating work?

4

Goals

What are the intermediate theories between λ-calculus
and implementations on modern machines?

What differences in techniques truly depend on evaluation
strategy?

What do we know about our implementations? Are they correct?

5

Goals

What are the intermediate theories between λ-calculus
and implementations on modern machines?

What differences in techniques truly depend on evaluation
strategy?

What do we know about our implementations? Are they correct?

5

Goals

What are the intermediate theories between λ-calculus
and implementations on modern machines?

What differences in techniques truly depend on evaluation
strategy?

What do we know about our implementations? Are they correct?

5

Goals

What are the intermediate theories between λ-calculus
and implementations on modern machines?

What differences in techniques truly depend on evaluation
strategy?

What do we know about our implementations? Are they correct?

5

Reduction Theory

6

What is a reduction theory?

It is composed of some expression syntax S and
rewriting rules S → S .

E ∈ Arith Expr ::= n | E + E

n + m −→⊕ c where n ⊕m = c

e.g.

(0 + 1) + (2 + 3) −→⊕ (0 + 1) + 5 −→⊕ 1 + 5 −→⊕ 6

Reductions are often compatible, thereby rewrites can be
applied in any order.

7

What is a reduction theory?

It is composed of some expression syntax S and
rewriting rules S → S .

E ∈ Arith Expr ::= n | E + E

n + m −→⊕ c where n ⊕m = c

e.g.

(0 + 1) + (2 + 3) −→⊕ (0 + 1) + 5 −→⊕ 1 + 5 −→⊕ 6

Reductions are often compatible, thereby rewrites can be
applied in any order.

7

What is a reduction theory?

It is composed of some expression syntax S and
rewriting rules S → S .

E ∈ Arith Expr ::= n | E + E

n + m −→⊕ c where n ⊕m = c

e.g.

(0 + 1) + (2 + 3) −→⊕ (0 + 1) + 5 −→⊕ 1 + 5 −→⊕ 6

Reductions are often compatible, thereby rewrites can be
applied in any order.

7

What is a reduction theory?

It is composed of some expression syntax S and
rewriting rules S → S .

E ∈ Arith Expr ::= n | E + E

n + m −→⊕ c where n ⊕m = c

e.g.

(0 + 1) + (2 + 3) −→⊕ (0 + 1) + 5 −→⊕ 1 + 5 −→⊕ 6

Reductions are often compatible, thereby rewrites can be
applied in any order.

7

What is a reduction theory?

It is composed of some expression syntax S and
rewriting rules S → S .

E ∈ Arith Expr ::= n | E + E

n + m −→⊕ c where n ⊕m = c

e.g.

(0 + 1) + (2 + 3) −→⊕

(0 + 1) + 5 −→⊕ 1 + 5 −→⊕ 6

Reductions are often compatible, thereby rewrites can be
applied in any order.

7

What is a reduction theory?

It is composed of some expression syntax S and
rewriting rules S → S .

E ∈ Arith Expr ::= n | E + E

n + m −→⊕ c where n ⊕m = c

e.g.

(0 + 1) + (2 + 3) −→⊕ (0 + 1) + 5 −→⊕ 1 + 5 −→⊕ 6

Reductions are often compatible, thereby rewrites can be
applied in any order.

7

What is a reduction theory?

It is composed of some expression syntax S and
rewriting rules S → S .

E ∈ Arith Expr ::= n | E + E

n + m −→⊕ c where n ⊕m = c

e.g.

(0 + 1) + (2 + 3) −→⊕ (0 + 1) + 5 −→⊕ 1 + 5 −→⊕ 6

Reductions are often compatible, thereby rewrites can be
applied in any order.

7

The λ-calculus

The terms of λ-calculus the following grammar:

L,M ,N ∈ Expression ::= x | λx .M | M N

Evaluation strategies are defined by different sets of
reduction rules:

• Call-by-name (Church)

• Call-by-value (Plotkin)

• Call-by-need (Ariola et al.)

8

The λ-calculus

The terms of λ-calculus the following grammar:

L,M ,N ∈ Expression ::= x | λx .M | M N

Evaluation strategies are defined by different sets of
reduction rules:

• Call-by-name (Church)

• Call-by-value (Plotkin)

• Call-by-need (Ariola et al.)

8

The λ-calculus

The terms of λ-calculus the following grammar:

L,M ,N ∈ Expression ::= x | λx .M | M N

Evaluation strategies are defined by different sets of
reduction rules:

• Call-by-name (Church)

• Call-by-value (Plotkin)

• Call-by-need (Ariola et al.)

8

The λ-calculus

The terms of λ-calculus the following grammar:

L,M ,N ∈ Expression ::= x | λx .M | M N

Evaluation strategies are defined by different sets of
reduction rules:

• Call-by-name (Church)

• Call-by-value (Plotkin)

• Call-by-need (Ariola et al.)

8

The λ-calculus

The terms of λ-calculus the following grammar:

L,M ,N ∈ Expression ::= x | λx .M | M N

Evaluation strategies are defined by different sets of
reduction rules:

• Call-by-name (Church)

• Call-by-value (Plotkin)

• Call-by-need (Ariola et al.)

8

The λ-calculus

The terms of λ-calculus the following grammar:

L,M ,N ∈ Expression ::= x | λx .M | M N

Evaluation strategies are defined by different sets of
reduction rules:

• Call-by-name (Church)

• Call-by-value (Plotkin)

• Call-by-need (Ariola et al.)

8

The λ-calculus

The terms of λ-calculus the following grammar:

L,M ,N ∈ Expression ::= x | λx .M | M N

Evaluation strategies are defined by different sets of
reduction rules:

• Call-by-name (Church)

• Call-by-value (Plotkin)

• Call-by-need (Ariola et al.)

8

Variables and Substitution

These calculi depend on two meta language operations:

A variable is free if there is no binder for it.

FV(x) = {x}
FV(λx .M) = FV(M)− {x}
FV(M N) = FV(M) ∪ FV(N)

Substitution, M[N/x], replaces N for a variable x in M.

9

Variables and Substitution

These calculi depend on two meta language operations:

A variable is free if there is no binder for it.

FV(x) = {x}
FV(λx .M) = FV(M)− {x}
FV(M N) = FV(M) ∪ FV(N)

Substitution, M[N/x], replaces N for a variable x in M.

9

Variables and Substitution

These calculi depend on two meta language operations:

A variable is free if there is no binder for it.

FV(x) = {x}
FV(λx .M) = FV(M)− {x}
FV(M N) = FV(M) ∪ FV(N)

Substitution, M[N/x], replaces N for a variable x in M.

9

Call-by-name

Church’s calculus has two equalities and a single reduction:

λx .M =α λy .M[y/x] where y 6∈ FV(M)
λx .M x =η M where x 6∈ FV(M)

(λx .M) N −→β M[N/x]

10

Call-by-name

Church’s calculus has two equalities and a single reduction:

λx .M =α λy .M[y/x] where y 6∈ FV(M)

λx .M x =η M where x 6∈ FV(M)

(λx .M) N −→β M[N/x]

10

Call-by-name

Church’s calculus has two equalities and a single reduction:

λx .M =α λy .M[y/x] where y 6∈ FV(M)
λx .M x =η M where x 6∈ FV(M)

(λx .M) N −→β M[N/x]

10

Call-by-name

Church’s calculus has two equalities and a single reduction:

λx .M =α λy .M[y/x] where y 6∈ FV(M)
λx .M x =η M where x 6∈ FV(M)

(λx .M) N −→β M[N/x]

10

Call-by-value

Was defined after the SECD machine.

Call-by-value restricts β-reduction to values:

(λx .M) V −→βV M[V /x]

V ,W ∈ Value ::= x | λx .M

Can reduce fewer terms than call-by-name, e.g.

(λx . 42) Ω

11

Call-by-value

Was defined after the SECD machine.

Call-by-value restricts β-reduction to values:

(λx .M) V −→βV M[V /x]

V ,W ∈ Value ::= x | λx .M

Can reduce fewer terms than call-by-name, e.g.

(λx . 42) Ω

11

Call-by-value

Was defined after the SECD machine.

Call-by-value restricts β-reduction to values:

(λx .M) V −→βV M[V /x]

V ,W ∈ Value ::= x | λx .M

Can reduce fewer terms than call-by-name, e.g.

(λx . 42) Ω

11

Call-by-value

Was defined after the SECD machine.

Call-by-value restricts β-reduction to values:

(λx .M) V −→βV M[V /x]

V ,W ∈ Value ::= x | λx .M

Can reduce fewer terms than call-by-name, e.g.

(λx . 42) Ω

11

Call-by-value

Was defined after the SECD machine.

Call-by-value restricts β-reduction to values:

(λx .M) V −→βV M[V /x]

V ,W ∈ Value ::= x | λx .M

Can reduce fewer terms than call-by-name, e.g.

(λx . 42) Ω

11

Call-by-value

Was defined after the SECD machine.

Call-by-value restricts β-reduction to values:

(λx .M) V −→βV M[V /x]

V ,W ∈ Value ::= x | λx .M

Can reduce fewer terms than call-by-name, e.g.

(λx . 42) Ω

11

Call-by-need

Call-by-name reduction can duplicate work

e.g.

(λx . x + x) (1 + 3) −→β (1 + 3) + (1 + 3)
−→+ 4 + (3 + 1)
−→+ 4 + 4
−→+ 8

Call-by-need will share the computation of (1 + 3).

12

Call-by-need

Call-by-name reduction can duplicate work e.g.

(λx . x + x) (1 + 3) −→β

(1 + 3) + (1 + 3)
−→+ 4 + (3 + 1)
−→+ 4 + 4
−→+ 8

Call-by-need will share the computation of (1 + 3).

12

Call-by-need

Call-by-name reduction can duplicate work e.g.

(λx . x + x) (1 + 3) −→β (1 + 3) + (1 + 3)
−→+ 4 + (3 + 1)
−→+ 4 + 4
−→+ 8

Call-by-need will share the computation of (1 + 3).

12

Call-by-need

Call-by-name reduction can duplicate work e.g.

(λx . x + x) (1 + 3) −→β (1 + 3) + (1 + 3)
−→+ 4 + (3 + 1)
−→+ 4 + 4
−→+ 8

Call-by-need will share the computation of (1 + 3).

12

Call-by-need λ-calculus

Applied λ-expressions are like let-expressions:

(λx . x + x) (1 + 3) = let x := 1 + 3 in x + x

let x := V in E [x] −→V let x := V in E [V]
(let x := M in L) N −→C let x := M in L N

let x := (let y := N in M) in L −→A let y := N in

let x := M in L

V ,W ∈ Value ::= λx .M

Instead of β, the call-by-need calculus operates on
graphs represented by let-expressions.

13

Call-by-need λ-calculus

Applied λ-expressions are like let-expressions:

(λx . x + x) (1 + 3) = let x := 1 + 3 in x + x

let x := V in E [x] −→V let x := V in E [V]

(let x := M in L) N −→C let x := M in L N
let x := (let y := N in M) in L −→A let y := N in

let x := M in L

V ,W ∈ Value ::= λx .M

Instead of β, the call-by-need calculus operates on
graphs represented by let-expressions.

13

Call-by-need λ-calculus

Applied λ-expressions are like let-expressions:

(λx . x + x) (1 + 3) = let x := 1 + 3 in x + x

let x := V in E [x] −→V let x := V in E [V]
(let x := M in L) N −→C let x := M in L N

let x := (let y := N in M) in L −→A let y := N in

let x := M in L

V ,W ∈ Value ::= λx .M

Instead of β, the call-by-need calculus operates on
graphs represented by let-expressions.

13

Call-by-need λ-calculus

Applied λ-expressions are like let-expressions:

(λx . x + x) (1 + 3) = let x := 1 + 3 in x + x

let x := V in E [x] −→V let x := V in E [V]
(let x := M in L) N −→C let x := M in L N

let x := (let y := N in M) in L −→A let y := N in

let x := M in L

V ,W ∈ Value ::= λx .M

Instead of β, the call-by-need calculus operates on
graphs represented by let-expressions.

13

Call-by-need λ-calculus

Applied λ-expressions are like let-expressions:

(λx . x + x) (1 + 3) = let x := 1 + 3 in x + x

let x := V in E [x] −→V let x := V in E [V]
(let x := M in L) N −→C let x := M in L N

let x := (let y := N in M) in L −→A let y := N in

let x := M in L

V ,W ∈ Value ::= λx .M

Instead of β, the call-by-need calculus operates on
graphs represented by let-expressions.

13

Call-by-need λ-calculus

Applied λ-expressions are like let-expressions:

(λx . x + x) (1 + 3) = let x := 1 + 3 in x + x

let x := V in E [x] −→V let x := V in E [V]
(let x := M in L) N −→C let x := M in L N

let x := (let y := N in M) in L −→A let y := N in

let x := M in L

V ,W ∈ Value ::= λx .M

Instead of β, the call-by-need calculus operates on
graphs represented by let-expressions.

13

Reducing the Meta Language

So far, I have used FV(M), M[N/x], and E [M].

These can be slow in practice.

As a remedy:

• De Bruijn notation allows us to reason about programs free of
variables e.g.

(λx .λy . x) =⇒ λλ1

• Explicit substitutions completely remove substitutions from
the meta language

• Abstract machines avoid the evaluation context’s meta
operation

14

Reducing the Meta Language

So far, I have used FV(M), M[N/x], and E [M].

These can be slow in practice.

As a remedy:

• De Bruijn notation allows us to reason about programs free of
variables e.g.

(λx .λy . x) =⇒ λλ1

• Explicit substitutions completely remove substitutions from
the meta language

• Abstract machines avoid the evaluation context’s meta
operation

14

Reducing the Meta Language

So far, I have used FV(M), M[N/x], and E [M].

These can be slow in practice.

As a remedy:

• De Bruijn notation allows us to reason about programs free of
variables e.g.

(λx .λy . x) =⇒ λλ1

• Explicit substitutions completely remove substitutions from
the meta language

• Abstract machines avoid the evaluation context’s meta
operation

14

Reducing the Meta Language

So far, I have used FV(M), M[N/x], and E [M].

These can be slow in practice.

As a remedy:

• De Bruijn notation allows us to reason about programs free of
variables

e.g.
(λx .λy . x) =⇒ λλ1

• Explicit substitutions completely remove substitutions from
the meta language

• Abstract machines avoid the evaluation context’s meta
operation

14

Reducing the Meta Language

So far, I have used FV(M), M[N/x], and E [M].

These can be slow in practice.

As a remedy:

• De Bruijn notation allows us to reason about programs free of
variables e.g.

(λx .λy . x) =⇒ λλ1

• Explicit substitutions completely remove substitutions from
the meta language

• Abstract machines avoid the evaluation context’s meta
operation

14

Reducing the Meta Language

So far, I have used FV(M), M[N/x], and E [M].

These can be slow in practice.

As a remedy:

• De Bruijn notation allows us to reason about programs free of
variables e.g.

(λx .λy . x) =⇒ λλ1

• Explicit substitutions completely remove substitutions from
the meta language

• Abstract machines avoid the evaluation context’s meta
operation

14

Reducing the Meta Language

So far, I have used FV(M), M[N/x], and E [M].

These can be slow in practice.

As a remedy:

• De Bruijn notation allows us to reason about programs free of
variables e.g.

(λx .λy . x) =⇒ λλ1

• Explicit substitutions completely remove substitutions from
the meta language

• Abstract machines avoid the evaluation context’s meta
operation

14

Operational Semantics

15

What is an operational semantics?

Reduction theories simply specify a set of rules to apply without
guidance.

In practice, we often want to know exactly how our program
computes a result e.g. consider the order of effects.

An operational semantics describes a method for computing a
result.

16

What is an operational semantics?

Reduction theories simply specify a set of rules to apply without
guidance.

In practice, we often want to know exactly how our program
computes a result e.g. consider the order of effects.

An operational semantics describes a method for computing a
result.

16

What is an operational semantics?

Reduction theories simply specify a set of rules to apply without
guidance.

In practice, we often want to know exactly how our program
computes a result e.g. consider the order of effects.

An operational semantics describes a method for computing a
result.

16

e.g. Arithmetic

An operational semantics for numbers will pick an evaluation order:

m ⊕ n = c
m + n 7−→ c

M 7−→ M ′

M + N 7−→ M ′ + N
N 7−→ N ′

m + N 7−→ m + N ′

The last two rules are called structural rules. They find the next
reducible expression.

Evaluation chains multiple steps till a result is found:

eval(M) = M ′ where M 7−→∗ M ′ 67−→ M ′′

17

e.g. Arithmetic

An operational semantics for numbers will pick an evaluation order:

m ⊕ n = c
m + n 7−→ c

M 7−→ M ′

M + N 7−→ M ′ + N

N 7−→ N ′

m + N 7−→ m + N ′

The last two rules are called structural rules. They find the next
reducible expression.

Evaluation chains multiple steps till a result is found:

eval(M) = M ′ where M 7−→∗ M ′ 67−→ M ′′

17

e.g. Arithmetic

An operational semantics for numbers will pick an evaluation order:

m ⊕ n = c
m + n 7−→ c

M 7−→ M ′

M + N 7−→ M ′ + N
N 7−→ N ′

m + N 7−→ m + N ′

The last two rules are called structural rules. They find the next
reducible expression.

Evaluation chains multiple steps till a result is found:

eval(M) = M ′ where M 7−→∗ M ′ 67−→ M ′′

17

e.g. Arithmetic

An operational semantics for numbers will pick an evaluation order:

m ⊕ n = c
m + n 7−→ c

M 7−→ M ′

M + N 7−→ M ′ + N
N 7−→ N ′

m + N 7−→ m + N ′

The last two rules are called structural rules.

They find the next
reducible expression.

Evaluation chains multiple steps till a result is found:

eval(M) = M ′ where M 7−→∗ M ′ 67−→ M ′′

17

e.g. Arithmetic

An operational semantics for numbers will pick an evaluation order:

m ⊕ n = c
m + n 7−→ c

M 7−→ M ′

M + N 7−→ M ′ + N
N 7−→ N ′

m + N 7−→ m + N ′

The last two rules are called structural rules. They find the next
reducible expression.

Evaluation chains multiple steps till a result is found:

eval(M) = M ′ where M 7−→∗ M ′ 67−→ M ′′

17

e.g. Arithmetic

An operational semantics for numbers will pick an evaluation order:

m ⊕ n = c
m + n 7−→ c

M 7−→ M ′

M + N 7−→ M ′ + N
N 7−→ N ′

m + N 7−→ m + N ′

The last two rules are called structural rules. They find the next
reducible expression.

Evaluation chains multiple steps till a result is found:

eval(M) = M ′ where M 7−→∗ M ′ 67−→ M ′′

17

Operational Semantics for Λ-terms

For call-by-name, arguments are not evaluated:

(λx .M) N 7−→ M[N/x]
M 7−→ M ′

M N 7−→ M ′ N

For call-by-value, we must evaluate the argument to a value:

(λx .M) V 7−→ M[V /x]

M 7−→ M ′

M N 7−→ M ′ N
N 7−→ N ′

(λx .M) N 7−→ (λx .M) N ′

The only difference in these two strategies is forcing
the argument.

18

Operational Semantics for Λ-terms

For call-by-name, arguments are not evaluated:

(λx .M) N 7−→ M[N/x]
M 7−→ M ′

M N 7−→ M ′ N

For call-by-value, we must evaluate the argument to a value:

(λx .M) V 7−→ M[V /x]

M 7−→ M ′

M N 7−→ M ′ N
N 7−→ N ′

(λx .M) N 7−→ (λx .M) N ′

The only difference in these two strategies is forcing
the argument.

18

Operational Semantics for Λ-terms

For call-by-name, arguments are not evaluated:

(λx .M) N 7−→ M[N/x]

M 7−→ M ′

M N 7−→ M ′ N

For call-by-value, we must evaluate the argument to a value:

(λx .M) V 7−→ M[V /x]

M 7−→ M ′

M N 7−→ M ′ N
N 7−→ N ′

(λx .M) N 7−→ (λx .M) N ′

The only difference in these two strategies is forcing
the argument.

18

Operational Semantics for Λ-terms

For call-by-name, arguments are not evaluated:

(λx .M) N 7−→ M[N/x]
M 7−→ M ′

M N 7−→ M ′ N

For call-by-value, we must evaluate the argument to a value:

(λx .M) V 7−→ M[V /x]

M 7−→ M ′

M N 7−→ M ′ N
N 7−→ N ′

(λx .M) N 7−→ (λx .M) N ′

The only difference in these two strategies is forcing
the argument.

18

Operational Semantics for Λ-terms

For call-by-name, arguments are not evaluated:

(λx .M) N 7−→ M[N/x]
M 7−→ M ′

M N 7−→ M ′ N

For call-by-value, we must evaluate the argument to a value:

(λx .M) V 7−→ M[V /x]

M 7−→ M ′

M N 7−→ M ′ N
N 7−→ N ′

(λx .M) N 7−→ (λx .M) N ′

The only difference in these two strategies is forcing
the argument.

18

Operational Semantics for Λ-terms

For call-by-name, arguments are not evaluated:

(λx .M) N 7−→ M[N/x]
M 7−→ M ′

M N 7−→ M ′ N

For call-by-value, we must evaluate the argument to a value:

(λx .M) V 7−→ M[V /x]

M 7−→ M ′

M N 7−→ M ′ N
N 7−→ N ′

(λx .M) N 7−→ (λx .M) N ′

The only difference in these two strategies is forcing
the argument.

18

Operational Semantics for Λ-terms

For call-by-name, arguments are not evaluated:

(λx .M) N 7−→ M[N/x]
M 7−→ M ′

M N 7−→ M ′ N

For call-by-value, we must evaluate the argument to a value:

(λx .M) V 7−→ M[V /x]

M 7−→ M ′

M N 7−→ M ′ N

N 7−→ N ′

(λx .M) N 7−→ (λx .M) N ′

The only difference in these two strategies is forcing
the argument.

18

Operational Semantics for Λ-terms

For call-by-name, arguments are not evaluated:

(λx .M) N 7−→ M[N/x]
M 7−→ M ′

M N 7−→ M ′ N

For call-by-value, we must evaluate the argument to a value:

(λx .M) V 7−→ M[V /x]

M 7−→ M ′

M N 7−→ M ′ N
N 7−→ N ′

(λx .M) N 7−→ (λx .M) N ′

The only difference in these two strategies is forcing
the argument.

18

Operational Semantics for Λ-terms

For call-by-name, arguments are not evaluated:

(λx .M) N 7−→ M[N/x]
M 7−→ M ′

M N 7−→ M ′ N

For call-by-value, we must evaluate the argument to a value:

(λx .M) V 7−→ M[V /x]

M 7−→ M ′

M N 7−→ M ′ N
N 7−→ N ′

(λx .M) N 7−→ (λx .M) N ′

The only difference in these two strategies is forcing
the argument.

18

Evaluation Contexts

Evaluation contexts allow us to specify only a single structural rule:

M −→ M ′

E [M] 7−→ E [M ′]

Given a set of evaluation contexts, we can uniquely decide the next
redex:

Eval Context+ ::= � | E + N | n + E
Eval ContextN ::= � | E N
Eval ContextV ::= � | E N | (λx .M) E
Eval ContextL ::= � | E N | let x := N in E | let x := E in E [x]

19

Evaluation Contexts

Evaluation contexts allow us to specify only a single structural rule:

M −→ M ′

E [M] 7−→ E [M ′]

Given a set of evaluation contexts, we can uniquely decide the next
redex:

Eval Context+ ::= � | E + N | n + E
Eval ContextN ::= � | E N
Eval ContextV ::= � | E N | (λx .M) E
Eval ContextL ::= � | E N | let x := N in E | let x := E in E [x]

19

Evaluation Contexts

Evaluation contexts allow us to specify only a single structural rule:

M −→ M ′

E [M] 7−→ E [M ′]

Given a set of evaluation contexts, we can uniquely decide the next
redex:

Eval Context+ ::= � | E + N | n + E
Eval ContextN ::= � | E N
Eval ContextV ::= � | E N | (λx .M) E
Eval ContextL ::= � | E N | let x := N in E | let x := E in E [x]

19

Evaluation Contexts

Evaluation contexts allow us to specify only a single structural rule:

M −→ M ′

E [M] 7−→ E [M ′]

Given a set of evaluation contexts, we can uniquely decide the next
redex:

Eval Context+ ::= � | E + N | n + E

Eval ContextN ::= � | E N
Eval ContextV ::= � | E N | (λx .M) E
Eval ContextL ::= � | E N | let x := N in E | let x := E in E [x]

19

Evaluation Contexts

Evaluation contexts allow us to specify only a single structural rule:

M −→ M ′

E [M] 7−→ E [M ′]

Given a set of evaluation contexts, we can uniquely decide the next
redex:

Eval Context+ ::= � | E + N | n + E
Eval ContextN ::= � | E N

Eval ContextV ::= � | E N | (λx .M) E
Eval ContextL ::= � | E N | let x := N in E | let x := E in E [x]

19

Evaluation Contexts

Evaluation contexts allow us to specify only a single structural rule:

M −→ M ′

E [M] 7−→ E [M ′]

Given a set of evaluation contexts, we can uniquely decide the next
redex:

Eval Context+ ::= � | E + N | n + E
Eval ContextN ::= � | E N
Eval ContextV ::= � | E N | (λx .M) E

Eval ContextL ::= � | E N | let x := N in E | let x := E in E [x]

19

Evaluation Contexts

Evaluation contexts allow us to specify only a single structural rule:

M −→ M ′

E [M] 7−→ E [M ′]

Given a set of evaluation contexts, we can uniquely decide the next
redex:

Eval Context+ ::= � | E + N | n + E
Eval ContextN ::= � | E N
Eval ContextV ::= � | E N | (λx .M) E
Eval ContextL ::= � | E N | let x := N in E | let x := E in E [x]

19

Big-Step Semantics

Big-step semantics relate an expression to its final output.

e.g.
M ⇓ m N ⇓ n

M + N ⇓ m ⊕ n n ⇓ n

These are defined inductively over the syntax of an expression.

This style of semantics can be easily implemented
as a recursive traversal of a term.

20

Big-Step Semantics

Big-step semantics relate an expression to its final output.

e.g.
M ⇓ m N ⇓ n

M + N ⇓ m ⊕ n n ⇓ n

These are defined inductively over the syntax of an expression.

This style of semantics can be easily implemented
as a recursive traversal of a term.

20

Big-Step Semantics

Big-step semantics relate an expression to its final output.

e.g.
M ⇓ m N ⇓ n

M + N ⇓ m ⊕ n n ⇓ n

These are defined inductively over the syntax of an expression.

This style of semantics can be easily implemented
as a recursive traversal of a term.

20

Big-Step Semantics

Big-step semantics relate an expression to its final output.

e.g.
M ⇓ m N ⇓ n

M + N ⇓ m ⊕ n n ⇓ n

These are defined inductively over the syntax of an expression.

This style of semantics can be easily implemented
as a recursive traversal of a term.

20

Big-Step Semantics

Big-step semantics relate an expression to its final output.

e.g.
M ⇓ m N ⇓ n

M + N ⇓ m ⊕ n n ⇓ n

These are defined inductively over the syntax of an expression.

This style of semantics can be easily implemented
as a recursive traversal of a term.

20

Big-Step Semantics for Λ-terms

Call-by-name rules:

x ⇓N x

λx .M ⇓N λx .M

M ⇓N λx . L L[N/x] ⇓N R

M N ⇓N R

Call-by-value changes only in the application case:

M ⇓V λx . L N ⇓V V L[V /x] ⇓V R

M N ⇓V R

Call-by-need must thread a heap throughout:

〈Φ ‖ M〉 ⇓L (Φ′, λx . L) 〈Φ′, x ′ 7→ N ‖ L[x ′/x]〉 ⇓L R

〈Φ ‖ M N〉 ⇓L R

21

Big-Step Semantics for Λ-terms

Call-by-name rules:

x ⇓N x λx .M ⇓N λx .M

M ⇓N λx . L L[N/x] ⇓N R

M N ⇓N R

Call-by-value changes only in the application case:

M ⇓V λx . L N ⇓V V L[V /x] ⇓V R

M N ⇓V R

Call-by-need must thread a heap throughout:

〈Φ ‖ M〉 ⇓L (Φ′, λx . L) 〈Φ′, x ′ 7→ N ‖ L[x ′/x]〉 ⇓L R

〈Φ ‖ M N〉 ⇓L R

21

Big-Step Semantics for Λ-terms

Call-by-name rules:

x ⇓N x λx .M ⇓N λx .M

M ⇓N λx . L L[N/x] ⇓N R

M N ⇓N R

Call-by-value changes only in the application case:

M ⇓V λx . L N ⇓V V L[V /x] ⇓V R

M N ⇓V R

Call-by-need must thread a heap throughout:

〈Φ ‖ M〉 ⇓L (Φ′, λx . L) 〈Φ′, x ′ 7→ N ‖ L[x ′/x]〉 ⇓L R

〈Φ ‖ M N〉 ⇓L R

21

Big-Step Semantics for Λ-terms

Call-by-name rules:

x ⇓N x λx .M ⇓N λx .M

M ⇓N λx . L L[N/x] ⇓N R

M N ⇓N R

Call-by-value changes only in the application case:

M ⇓V λx . L N ⇓V V L[V /x] ⇓V R

M N ⇓V R

Call-by-need must thread a heap throughout:

〈Φ ‖ M〉 ⇓L (Φ′, λx . L) 〈Φ′, x ′ 7→ N ‖ L[x ′/x]〉 ⇓L R

〈Φ ‖ M N〉 ⇓L R

21

Big-Step Semantics for Λ-terms

Call-by-name rules:

x ⇓N x λx .M ⇓N λx .M

M ⇓N λx . L L[N/x] ⇓N R

M N ⇓N R

Call-by-value changes only in the application case:

M ⇓V λx . L N ⇓V V L[V /x] ⇓V R

M N ⇓V R

Call-by-need must thread a heap throughout:

〈Φ ‖ M〉 ⇓L (Φ′, λx . L) 〈Φ′, x ′ 7→ N ‖ L[x ′/x]〉 ⇓L R

〈Φ ‖ M N〉 ⇓L R

21

Big-Step Semantics for Λ-terms

Call-by-name rules:

x ⇓N x λx .M ⇓N λx .M

M ⇓N λx . L L[N/x] ⇓N R

M N ⇓N R

Call-by-value changes only in the application case:

M ⇓V λx . L N ⇓V V L[V /x] ⇓V R

M N ⇓V R

Call-by-need must thread a heap throughout:

〈Φ ‖ M〉 ⇓L (Φ′, λx . L) 〈Φ′, x ′ 7→ N ‖ L[x ′/x]〉 ⇓L R

〈Φ ‖ M N〉 ⇓L R

21

Big-Step Semantics for Λ-terms

Call-by-name rules:

x ⇓N x λx .M ⇓N λx .M

M ⇓N λx . L L[N/x] ⇓N R

M N ⇓N R

Call-by-value changes only in the application case:

M ⇓V λx . L N ⇓V V L[V /x] ⇓V R

M N ⇓V R

Call-by-need must thread a heap throughout:

〈Φ ‖ M〉 ⇓L (Φ′, λx . L) 〈Φ′, x ′ 7→ N ‖ L[x ′/x]〉 ⇓L R

〈Φ ‖ M N〉 ⇓L R

21

Big-step Environment Semantics

Instead of substitutions, the semantics are defined with an environment.

Considering call-by-name:

〈Σ ‖ λx .M〉 ⇓N (Σ, λx .M)

Closures are added as results to capture the values of free variables.

〈Σ ‖ M〉 ⇓N (Σ′, λx . L) 〈Σ′, x 7→ (Σ,N) ‖ L〉 ⇓N R

〈Σ ‖ M N〉 ⇓N R

Thunk closures are added as values since parameters may have free
variables.

Σ(x) = (Σ′,M) 〈Σ′ ‖ M〉 ⇓N R

〈Σ ‖ x〉 ⇓N R

Evaluation of variable is delayed until lookup.

22

Big-step Environment Semantics

Instead of substitutions, the semantics are defined with an environment.

Considering call-by-name:

〈Σ ‖ λx .M〉 ⇓N (Σ, λx .M)

Closures are added as results to capture the values of free variables.

〈Σ ‖ M〉 ⇓N (Σ′, λx . L) 〈Σ′, x 7→ (Σ,N) ‖ L〉 ⇓N R

〈Σ ‖ M N〉 ⇓N R

Thunk closures are added as values since parameters may have free
variables.

Σ(x) = (Σ′,M) 〈Σ′ ‖ M〉 ⇓N R

〈Σ ‖ x〉 ⇓N R

Evaluation of variable is delayed until lookup.

22

Big-step Environment Semantics

Instead of substitutions, the semantics are defined with an environment.

Considering call-by-name:

〈Σ ‖ λx .M〉 ⇓N (Σ, λx .M)

Closures are added as results to capture the values of free variables.

〈Σ ‖ M〉 ⇓N (Σ′, λx . L) 〈Σ′, x 7→ (Σ,N) ‖ L〉 ⇓N R

〈Σ ‖ M N〉 ⇓N R

Thunk closures are added as values since parameters may have free
variables.

Σ(x) = (Σ′,M) 〈Σ′ ‖ M〉 ⇓N R

〈Σ ‖ x〉 ⇓N R

Evaluation of variable is delayed until lookup.

22

Big-step Environment Semantics

Instead of substitutions, the semantics are defined with an environment.

Considering call-by-name:

〈Σ ‖ λx .M〉 ⇓N (Σ, λx .M)

Closures are added as results to capture the values of free variables.

〈Σ ‖ M〉 ⇓N (Σ′, λx . L) 〈Σ′, x 7→ (Σ,N) ‖ L〉 ⇓N R

〈Σ ‖ M N〉 ⇓N R

Thunk closures are added as values since parameters may have free
variables.

Σ(x) = (Σ′,M) 〈Σ′ ‖ M〉 ⇓N R

〈Σ ‖ x〉 ⇓N R

Evaluation of variable is delayed until lookup.

22

Big-step Environment Semantics

Instead of substitutions, the semantics are defined with an environment.

Considering call-by-name:

〈Σ ‖ λx .M〉 ⇓N (Σ, λx .M)

Closures are added as results to capture the values of free variables.

〈Σ ‖ M〉 ⇓N (Σ′, λx . L) 〈Σ′, x 7→ (Σ,N) ‖ L〉 ⇓N R

〈Σ ‖ M N〉 ⇓N R

Thunk closures are added as values since parameters may have free
variables.

Σ(x) = (Σ′,M) 〈Σ′ ‖ M〉 ⇓N R

〈Σ ‖ x〉 ⇓N R

Evaluation of variable is delayed until lookup.

22

Big-step Environment Semantics

Instead of substitutions, the semantics are defined with an environment.

Considering call-by-name:

〈Σ ‖ λx .M〉 ⇓N (Σ, λx .M)

Closures are added as results to capture the values of free variables.

〈Σ ‖ M〉 ⇓N (Σ′, λx . L) 〈Σ′, x 7→ (Σ,N) ‖ L〉 ⇓N R

〈Σ ‖ M N〉 ⇓N R

Thunk closures are added as values since parameters may have free
variables.

Σ(x) = (Σ′,M) 〈Σ′ ‖ M〉 ⇓N R

〈Σ ‖ x〉 ⇓N R

Evaluation of variable is delayed until lookup.

22

Big-step Environment Semantics

Instead of substitutions, the semantics are defined with an environment.

Considering call-by-name:

〈Σ ‖ λx .M〉 ⇓N (Σ, λx .M)

Closures are added as results to capture the values of free variables.

〈Σ ‖ M〉 ⇓N (Σ′, λx . L) 〈Σ′, x 7→ (Σ,N) ‖ L〉 ⇓N R

〈Σ ‖ M N〉 ⇓N R

Thunk closures are added as values since parameters may have free
variables.

Σ(x) = (Σ′,M) 〈Σ′ ‖ M〉 ⇓N R

〈Σ ‖ x〉 ⇓N R

Evaluation of variable is delayed until lookup.

22

Big-step Environment Semantics

Instead of substitutions, the semantics are defined with an environment.

Considering call-by-name:

〈Σ ‖ λx .M〉 ⇓N (Σ, λx .M)

Closures are added as results to capture the values of free variables.

〈Σ ‖ M〉 ⇓N (Σ′, λx . L) 〈Σ′, x 7→ (Σ,N) ‖ L〉 ⇓N R

〈Σ ‖ M N〉 ⇓N R

Thunk closures are added as values since parameters may have free
variables.

Σ(x) = (Σ′,M) 〈Σ′ ‖ M〉 ⇓N R

〈Σ ‖ x〉 ⇓N R

Evaluation of variable is delayed until lookup.

22

Big-step Environment Semantics

Considering call-by-value:

〈Σ ‖ λx .M〉 ⇓V (Σ, λx .M)

〈Σ ‖ M〉 ⇓V (Σ′, λx . L) 〈Σ ‖ N〉 ⇓V V 〈Σ′, x 7→ V ‖ L〉 ⇓V R

〈Σ ‖ M N〉 ⇓V R

Σ(x) = R

〈Σ ‖ x〉 ⇓V R

Call-by-value does not require thunk closures.

23

Big-step Environment Semantics

Considering call-by-value:

〈Σ ‖ λx .M〉 ⇓V (Σ, λx .M)

〈Σ ‖ M〉 ⇓V (Σ′, λx . L) 〈Σ ‖ N〉 ⇓V V 〈Σ′, x 7→ V ‖ L〉 ⇓V R

〈Σ ‖ M N〉 ⇓V R

Σ(x) = R

〈Σ ‖ x〉 ⇓V R

Call-by-value does not require thunk closures.

23

Big-step Environment Semantics

Considering call-by-value:

〈Σ ‖ λx .M〉 ⇓V (Σ, λx .M)

〈Σ ‖ M〉 ⇓V (Σ′, λx . L) 〈Σ ‖ N〉 ⇓V V 〈Σ′, x 7→ V ‖ L〉 ⇓V R

〈Σ ‖ M N〉 ⇓V R

Σ(x) = R

〈Σ ‖ x〉 ⇓V R

Call-by-value does not require thunk closures.

23

Big-step Environment Semantics

Considering call-by-value:

〈Σ ‖ λx .M〉 ⇓V (Σ, λx .M)

〈Σ ‖ M〉 ⇓V (Σ′, λx . L) 〈Σ ‖ N〉 ⇓V V 〈Σ′, x 7→ V ‖ L〉 ⇓V R

〈Σ ‖ M N〉 ⇓V R

Σ(x) = R

〈Σ ‖ x〉 ⇓V R

Call-by-value does not require thunk closures.

23

Big-step Environment Semantics

Considering call-by-value:

〈Σ ‖ λx .M〉 ⇓V (Σ, λx .M)

〈Σ ‖ M〉 ⇓V (Σ′, λx . L) 〈Σ ‖ N〉 ⇓V V 〈Σ′, x 7→ V ‖ L〉 ⇓V R

〈Σ ‖ M N〉 ⇓V R

Σ(x) = R

〈Σ ‖ x〉 ⇓V R

Call-by-value does not require thunk closures.

23

Operational Semantics Recap

Describe how to get from a program to a final result.

Small-step semantics adds structural rules to decide which
reduction to apply next.

Big-step semantics describes evaluation inductively over the syntax.

Concerning evaluation strategies:

• All call-by-value semantics must force arguments.

• Call-by-name environment semantics require more closures.

• Call-by-need big-step semantics requires heaps.

24

Operational Semantics Recap

Describe how to get from a program to a final result.

Small-step semantics adds structural rules to decide which
reduction to apply next.

Big-step semantics describes evaluation inductively over the syntax.

Concerning evaluation strategies:

• All call-by-value semantics must force arguments.

• Call-by-name environment semantics require more closures.

• Call-by-need big-step semantics requires heaps.

24

Operational Semantics Recap

Describe how to get from a program to a final result.

Small-step semantics adds structural rules to decide which
reduction to apply next.

Big-step semantics describes evaluation inductively over the syntax.

Concerning evaluation strategies:

• All call-by-value semantics must force arguments.

• Call-by-name environment semantics require more closures.

• Call-by-need big-step semantics requires heaps.

24

Operational Semantics Recap

Describe how to get from a program to a final result.

Small-step semantics adds structural rules to decide which
reduction to apply next.

Big-step semantics describes evaluation inductively over the syntax.

Concerning evaluation strategies:

• All call-by-value semantics must force arguments.

• Call-by-name environment semantics require more closures.

• Call-by-need big-step semantics requires heaps.

24

Operational Semantics Recap

Describe how to get from a program to a final result.

Small-step semantics adds structural rules to decide which
reduction to apply next.

Big-step semantics describes evaluation inductively over the syntax.

Concerning evaluation strategies:

• All call-by-value semantics must force arguments.

• Call-by-name environment semantics require more closures.

• Call-by-need big-step semantics requires heaps.

24

Operational Semantics Recap

Describe how to get from a program to a final result.

Small-step semantics adds structural rules to decide which
reduction to apply next.

Big-step semantics describes evaluation inductively over the syntax.

Concerning evaluation strategies:

• All call-by-value semantics must force arguments.

• Call-by-name environment semantics require more closures.

• Call-by-need big-step semantics requires heaps.

24

Operational Semantics Recap

Describe how to get from a program to a final result.

Small-step semantics adds structural rules to decide which
reduction to apply next.

Big-step semantics describes evaluation inductively over the syntax.

Concerning evaluation strategies:

• All call-by-value semantics must force arguments.

• Call-by-name environment semantics require more closures.

• Call-by-need big-step semantics requires heaps.

24

Operational Semantics Recap

Describe how to get from a program to a final result.

Small-step semantics adds structural rules to decide which
reduction to apply next.

Big-step semantics describes evaluation inductively over the syntax.

Concerning evaluation strategies:

• All call-by-value semantics must force arguments.

• Call-by-name environment semantics require more closures.

• Call-by-need big-step semantics requires heaps.

24

Combinators and their
Machines

25

Combinators

Combinators are expressions without free variables:

S f g x = f x (g x)
K x y = x
I x = x

plus x y = x + y

To represent computable functions, we need only S and K.

Combinator machines (Turner) take combinators to be the only
function primitives.

26

Combinators

Combinators are expressions without free variables:

S f g x = f x (g x)
K x y = x
I x = x

plus x y = x + y

To represent computable functions, we need only S and K.

Combinator machines (Turner) take combinators to be the only
function primitives.

26

Combinators

Combinators are expressions without free variables:

S f g x = f x (g x)

K x y = x
I x = x

plus x y = x + y

To represent computable functions, we need only S and K.

Combinator machines (Turner) take combinators to be the only
function primitives.

26

Combinators

Combinators are expressions without free variables:

S f g x = f x (g x)
K x y = x

I x = x
plus x y = x + y

To represent computable functions, we need only S and K.

Combinator machines (Turner) take combinators to be the only
function primitives.

26

Combinators

Combinators are expressions without free variables:

S f g x = f x (g x)
K x y = x
I x = x

plus x y = x + y

To represent computable functions, we need only S and K.

Combinator machines (Turner) take combinators to be the only
function primitives.

26

Combinators

Combinators are expressions without free variables:

S f g x = f x (g x)
K x y = x
I x = x

plus x y = x + y

To represent computable functions, we need only S and K.

Combinator machines (Turner) take combinators to be the only
function primitives.

26

Combinators

Combinators are expressions without free variables:

S f g x = f x (g x)
K x y = x
I x = x

plus x y = x + y

To represent computable functions, we need only S and K.

Combinator machines (Turner) take combinators to be the only
function primitives.

26

Combinators

Combinators are expressions without free variables:

S f g x = f x (g x)
K x y = x
I x = x

plus x y = x + y

To represent computable functions, we need only S and K.

Combinator machines (Turner) take combinators to be the only
function primitives.

26

Combinator machines

We must first convert our functions into combinators:

def double x = x + x

is converted to:

def double = S (S (K plus) I) I

We can build a machine that manipulates a term with only combinator
application:

(S (S (K plus) I) I) 21
−→S (S (K plus) I) 21 (I 21)
−→S (K plus) 21 (I 21) (I 21)
−→K plus (I 21) (I 21)
−→2

I plus 21 21
−→+ 42

Notice the lack of β-reduction and variables.

27

Combinator machines

We must first convert our functions into combinators:

def double x = x + x

is converted to:

def double = S (S (K plus) I) I

We can build a machine that manipulates a term with only combinator
application:

(S (S (K plus) I) I) 21
−→S (S (K plus) I) 21 (I 21)
−→S (K plus) 21 (I 21) (I 21)
−→K plus (I 21) (I 21)
−→2

I plus 21 21
−→+ 42

Notice the lack of β-reduction and variables.

27

Combinator machines

We must first convert our functions into combinators:

def double x = x + x

is converted to:

def double = S (S (K plus) I) I

We can build a machine that manipulates a term with only combinator
application:

(S (S (K plus) I) I) 21
−→S (S (K plus) I) 21 (I 21)
−→S (K plus) 21 (I 21) (I 21)
−→K plus (I 21) (I 21)
−→2

I plus 21 21
−→+ 42

Notice the lack of β-reduction and variables.

27

Combinator machines

We must first convert our functions into combinators:

def double x = x + x

is converted to:

def double = S (S (K plus) I) I

We can build a machine that manipulates a term with only combinator
application:

(S (S (K plus) I) I) 21
−→S (S (K plus) I) 21 (I 21)
−→S (K plus) 21 (I 21) (I 21)
−→K plus (I 21) (I 21)
−→2

I plus 21 21
−→+ 42

Notice the lack of β-reduction and variables.

27

Combinator machines

We must first convert our functions into combinators:

def double x = x + x

is converted to:

def double = S (S (K plus) I) I

We can build a machine that manipulates a term with only combinator
application:

(S (S (K plus) I) I) 21
−→S

(S (K plus) I) 21 (I 21)
−→S (K plus) 21 (I 21) (I 21)
−→K plus (I 21) (I 21)
−→2

I plus 21 21
−→+ 42

Notice the lack of β-reduction and variables.

27

Combinator machines

We must first convert our functions into combinators:

def double x = x + x

is converted to:

def double = S (S (K plus) I) I

We can build a machine that manipulates a term with only combinator
application:

(S (S (K plus) I) I) 21
−→S (S (K plus) I) 21 (I 21)

−→S (K plus) 21 (I 21) (I 21)
−→K plus (I 21) (I 21)
−→2

I plus 21 21
−→+ 42

Notice the lack of β-reduction and variables.

27

Combinator machines

We must first convert our functions into combinators:

def double x = x + x

is converted to:

def double = S (S (K plus) I) I

We can build a machine that manipulates a term with only combinator
application:

(S (S (K plus) I) I) 21
−→S (S (K plus) I) 21 (I 21)
−→S (K plus) 21 (I 21) (I 21)

−→K plus (I 21) (I 21)
−→2

I plus 21 21
−→+ 42

Notice the lack of β-reduction and variables.

27

Combinator machines

We must first convert our functions into combinators:

def double x = x + x

is converted to:

def double = S (S (K plus) I) I

We can build a machine that manipulates a term with only combinator
application:

(S (S (K plus) I) I) 21
−→S (S (K plus) I) 21 (I 21)
−→S (K plus) 21 (I 21) (I 21)
−→K plus (I 21) (I 21)

−→2
I plus 21 21

−→+ 42

Notice the lack of β-reduction and variables.

27

Combinator machines

We must first convert our functions into combinators:

def double x = x + x

is converted to:

def double = S (S (K plus) I) I

We can build a machine that manipulates a term with only combinator
application:

(S (S (K plus) I) I) 21
−→S (S (K plus) I) 21 (I 21)
−→S (K plus) 21 (I 21) (I 21)
−→K plus (I 21) (I 21)
−→2

I plus 21 21

−→+ 42

Notice the lack of β-reduction and variables.

27

Combinator machines

We must first convert our functions into combinators:

def double x = x + x

is converted to:

def double = S (S (K plus) I) I

We can build a machine that manipulates a term with only combinator
application:

(S (S (K plus) I) I) 21
−→S (S (K plus) I) 21 (I 21)
−→S (K plus) 21 (I 21) (I 21)
−→K plus (I 21) (I 21)
−→2

I plus 21 21
−→+ 42

Notice the lack of β-reduction and variables.

27

Combinator machines

We must first convert our functions into combinators:

def double x = x + x

is converted to:

def double = S (S (K plus) I) I

We can build a machine that manipulates a term with only combinator
application:

(S (S (K plus) I) I) 21
−→S (S (K plus) I) 21 (I 21)
−→S (K plus) 21 (I 21) (I 21)
−→K plus (I 21) (I 21)
−→2

I plus 21 21
−→+ 42

Notice the lack of β-reduction and variables.

27

Super-combinators and Lambda-lifting

Super-combinators can be derived from source code by
lambda-lifting.

e.g.
. . . (λx .x + 6 ∗ y) . . .

generates the super-combinator:

F y x = x + 6 ∗ y

And a partial applications is left in place of the original function:

. . .F y . . .

28

Super-combinators and Lambda-lifting

Super-combinators can be derived from source code by
lambda-lifting.

e.g.
. . . (λx .x + 6 ∗ y) . . .

generates the super-combinator:

F y x = x + 6 ∗ y

And a partial applications is left in place of the original function:

. . .F y . . .

28

Super-combinators and Lambda-lifting

Super-combinators can be derived from source code by
lambda-lifting.

e.g.
. . . (λx .x + 6 ∗ y) . . .

generates the super-combinator:

F y x = x + 6 ∗ y

And a partial applications is left in place of the original function:

. . .F y . . .

28

Super-combinators and Lambda-lifting

Super-combinators can be derived from source code by
lambda-lifting.

e.g.
. . . (λx .x + 6 ∗ y) . . .

generates the super-combinator:

F y x = x + 6 ∗ y

And a partial applications is left in place of the original function:

. . .F y . . .

28

Super-combinators and Lambda-lifting

Super-combinators can be derived from source code by
lambda-lifting.

e.g.
. . . (λx .x + 6 ∗ y) . . .

generates the super-combinator:

F y x = x + 6 ∗ y

And a partial applications is left in place of the original function:

. . .F y . . .

28

Combinator Machines

Fixed set of combinators:

• Turner’s machine

• Categorical Abstract Machine (call-by-value)

Super-combinator machines:

• The G-machine

• Categorical Multi-combinator Machine (call-by-value)

• The Spineless G-machine

Combinator machines approach has been largely abandoned
for environment machines.

29

Combinator Machines

Fixed set of combinators:

• Turner’s machine

• Categorical Abstract Machine (call-by-value)

Super-combinator machines:

• The G-machine

• Categorical Multi-combinator Machine (call-by-value)

• The Spineless G-machine

Combinator machines approach has been largely abandoned
for environment machines.

29

Combinator Machines

Fixed set of combinators:

• Turner’s machine

• Categorical Abstract Machine (call-by-value)

Super-combinator machines:

• The G-machine

• Categorical Multi-combinator Machine (call-by-value)

• The Spineless G-machine

Combinator machines approach has been largely abandoned
for environment machines.

29

Combinator Machines

Fixed set of combinators:

• Turner’s machine

• Categorical Abstract Machine (call-by-value)

Super-combinator machines:

• The G-machine

• Categorical Multi-combinator Machine (call-by-value)

• The Spineless G-machine

Combinator machines approach has been largely abandoned
for environment machines.

29

Combinator Machines

Fixed set of combinators:

• Turner’s machine

• Categorical Abstract Machine (call-by-value)

Super-combinator machines:

• The G-machine

• Categorical Multi-combinator Machine (call-by-value)

• The Spineless G-machine

Combinator machines approach has been largely abandoned
for environment machines.

29

Combinator Machines

Fixed set of combinators:

• Turner’s machine

• Categorical Abstract Machine (call-by-value)

Super-combinator machines:

• The G-machine

• Categorical Multi-combinator Machine (call-by-value)

• The Spineless G-machine

Combinator machines approach has been largely abandoned
for environment machines.

29

Combinator Machines

Fixed set of combinators:

• Turner’s machine

• Categorical Abstract Machine (call-by-value)

Super-combinator machines:

• The G-machine

• Categorical Multi-combinator Machine (call-by-value)

• The Spineless G-machine

Combinator machines approach has been largely abandoned
for environment machines.

29

Combinator Machines

Fixed set of combinators:

• Turner’s machine

• Categorical Abstract Machine (call-by-value)

Super-combinator machines:

• The G-machine

• Categorical Multi-combinator Machine (call-by-value)

• The Spineless G-machine

Combinator machines approach has been largely abandoned
for environment machines.

29

Combinator Machines

Fixed set of combinators:

• Turner’s machine

• Categorical Abstract Machine (call-by-value)

Super-combinator machines:

• The G-machine

• Categorical Multi-combinator Machine (call-by-value)

• The Spineless G-machine

Combinator machines approach has been largely abandoned
for environment machines.

29

Abstract Machines

30

What are abstract machines?

Recall the evaluation rule for small-step semantics:

M −→ M ′

E [M] 7−→ E [M ′]

Every evaluation step requires a recursive search for an evaluation
context.

Instead of searching for the next redex, abstract
machines keep track of the context as state.

31

What are abstract machines?

Recall the evaluation rule for small-step semantics:

M −→ M ′

E [M] 7−→ E [M ′]

Every evaluation step requires a recursive search for an evaluation
context.

Instead of searching for the next redex, abstract
machines keep track of the context as state.

31

What are abstract machines?

Recall the evaluation rule for small-step semantics:

M −→ M ′

E [M] 7−→ E [M ′]

Every evaluation step requires a recursive search for an evaluation
context.

Instead of searching for the next redex, abstract
machines keep track of the context as state.

31

SECD Machine

Machine Configuration ::= 〈S ‖ E ‖ C ‖ D〉

S is a stack of values

E is an environment mapping variables to values

C holds a control stack

D holds a machine state

〈S ‖ E ‖ M N · C ‖ D〉 7−→ 〈S ‖ E ‖ N ·M · ap · C ‖ D〉
〈S ‖ E ‖ λx .M · C ‖ D〉 7−→ 〈(E , λx .M) · S ‖ E ‖ C ‖ D〉

〈(E ′, λx .M) · V · S ‖ E ‖ ap · C ‖ D〉 7−→ 〈ε ‖ E ′, x 7→ V ‖ M · ε ‖ (S ,E ,C ,D)〉
〈S ‖ E ‖ x · C ‖ D〉 7−→ 〈E(x) · S ‖ E ‖ C ‖ D〉

〈V · ε ‖ E ‖ ε ‖ (S ′,E ′,C ′,D′)〉 7−→ 〈V · S ′ ‖ E ′ ‖ C ′ ‖ D′〉

32

SECD Machine

Machine Configuration ::= 〈S ‖ E ‖ C ‖ D〉

S is a stack of values

E is an environment mapping variables to values

C holds a control stack

D holds a machine state

〈S ‖ E ‖ M N · C ‖ D〉 7−→ 〈S ‖ E ‖ N ·M · ap · C ‖ D〉
〈S ‖ E ‖ λx .M · C ‖ D〉 7−→ 〈(E , λx .M) · S ‖ E ‖ C ‖ D〉

〈(E ′, λx .M) · V · S ‖ E ‖ ap · C ‖ D〉 7−→ 〈ε ‖ E ′, x 7→ V ‖ M · ε ‖ (S ,E ,C ,D)〉
〈S ‖ E ‖ x · C ‖ D〉 7−→ 〈E(x) · S ‖ E ‖ C ‖ D〉

〈V · ε ‖ E ‖ ε ‖ (S ′,E ′,C ′,D′)〉 7−→ 〈V · S ′ ‖ E ′ ‖ C ′ ‖ D′〉

32

SECD Machine

Machine Configuration ::= 〈S ‖ E ‖ C ‖ D〉

S is a stack of values

E is an environment mapping variables to values

C holds a control stack

D holds a machine state

〈S ‖ E ‖ M N · C ‖ D〉 7−→ 〈S ‖ E ‖ N ·M · ap · C ‖ D〉
〈S ‖ E ‖ λx .M · C ‖ D〉 7−→ 〈(E , λx .M) · S ‖ E ‖ C ‖ D〉

〈(E ′, λx .M) · V · S ‖ E ‖ ap · C ‖ D〉 7−→ 〈ε ‖ E ′, x 7→ V ‖ M · ε ‖ (S ,E ,C ,D)〉
〈S ‖ E ‖ x · C ‖ D〉 7−→ 〈E(x) · S ‖ E ‖ C ‖ D〉

〈V · ε ‖ E ‖ ε ‖ (S ′,E ′,C ′,D′)〉 7−→ 〈V · S ′ ‖ E ′ ‖ C ′ ‖ D′〉

32

SECD Machine

Machine Configuration ::= 〈S ‖ E ‖ C ‖ D〉

S is a stack of values

E is an environment mapping variables to values

C holds a control stack

D holds a machine state

〈S ‖ E ‖ M N · C ‖ D〉 7−→ 〈S ‖ E ‖ N ·M · ap · C ‖ D〉
〈S ‖ E ‖ λx .M · C ‖ D〉 7−→ 〈(E , λx .M) · S ‖ E ‖ C ‖ D〉

〈(E ′, λx .M) · V · S ‖ E ‖ ap · C ‖ D〉 7−→ 〈ε ‖ E ′, x 7→ V ‖ M · ε ‖ (S ,E ,C ,D)〉
〈S ‖ E ‖ x · C ‖ D〉 7−→ 〈E(x) · S ‖ E ‖ C ‖ D〉

〈V · ε ‖ E ‖ ε ‖ (S ′,E ′,C ′,D′)〉 7−→ 〈V · S ′ ‖ E ′ ‖ C ′ ‖ D′〉

32

SECD Machine

Machine Configuration ::= 〈S ‖ E ‖ C ‖ D〉

S is a stack of values

E is an environment mapping variables to values

C holds a control stack

D holds a machine state

〈S ‖ E ‖ M N · C ‖ D〉 7−→ 〈S ‖ E ‖ N ·M · ap · C ‖ D〉
〈S ‖ E ‖ λx .M · C ‖ D〉 7−→ 〈(E , λx .M) · S ‖ E ‖ C ‖ D〉

〈(E ′, λx .M) · V · S ‖ E ‖ ap · C ‖ D〉 7−→ 〈ε ‖ E ′, x 7→ V ‖ M · ε ‖ (S ,E ,C ,D)〉
〈S ‖ E ‖ x · C ‖ D〉 7−→ 〈E(x) · S ‖ E ‖ C ‖ D〉

〈V · ε ‖ E ‖ ε ‖ (S ′,E ′,C ′,D′)〉 7−→ 〈V · S ′ ‖ E ′ ‖ C ′ ‖ D′〉

32

SECD Machine

Machine Configuration ::= 〈S ‖ E ‖ C ‖ D〉

S is a stack of values

E is an environment mapping variables to values

C holds a control stack

D holds a machine state

〈S ‖ E ‖ M N · C ‖ D〉 7−→ 〈S ‖ E ‖ N ·M · ap · C ‖ D〉

〈S ‖ E ‖ λx .M · C ‖ D〉 7−→ 〈(E , λx .M) · S ‖ E ‖ C ‖ D〉
〈(E ′, λx .M) · V · S ‖ E ‖ ap · C ‖ D〉 7−→ 〈ε ‖ E ′, x 7→ V ‖ M · ε ‖ (S ,E ,C ,D)〉

〈S ‖ E ‖ x · C ‖ D〉 7−→ 〈E(x) · S ‖ E ‖ C ‖ D〉
〈V · ε ‖ E ‖ ε ‖ (S ′,E ′,C ′,D′)〉 7−→ 〈V · S ′ ‖ E ′ ‖ C ′ ‖ D′〉

32

SECD Machine

Machine Configuration ::= 〈S ‖ E ‖ C ‖ D〉

S is a stack of values

E is an environment mapping variables to values

C holds a control stack

D holds a machine state

〈S ‖ E ‖ M N · C ‖ D〉 7−→ 〈S ‖ E ‖ N ·M · ap · C ‖ D〉
〈S ‖ E ‖ λx .M · C ‖ D〉 7−→ 〈(E , λx .M) · S ‖ E ‖ C ‖ D〉

〈(E ′, λx .M) · V · S ‖ E ‖ ap · C ‖ D〉 7−→ 〈ε ‖ E ′, x 7→ V ‖ M · ε ‖ (S ,E ,C ,D)〉
〈S ‖ E ‖ x · C ‖ D〉 7−→ 〈E(x) · S ‖ E ‖ C ‖ D〉

〈V · ε ‖ E ‖ ε ‖ (S ′,E ′,C ′,D′)〉 7−→ 〈V · S ′ ‖ E ′ ‖ C ′ ‖ D′〉

32

SECD Machine

Machine Configuration ::= 〈S ‖ E ‖ C ‖ D〉

S is a stack of values

E is an environment mapping variables to values

C holds a control stack

D holds a machine state

〈S ‖ E ‖ M N · C ‖ D〉 7−→ 〈S ‖ E ‖ N ·M · ap · C ‖ D〉
〈S ‖ E ‖ λx .M · C ‖ D〉 7−→ 〈(E , λx .M) · S ‖ E ‖ C ‖ D〉

〈(E ′, λx .M) · V · S ‖ E ‖ ap · C ‖ D〉 7−→ 〈ε ‖ E ′, x 7→ V ‖ M · ε ‖ (S ,E ,C ,D)〉

〈S ‖ E ‖ x · C ‖ D〉 7−→ 〈E(x) · S ‖ E ‖ C ‖ D〉
〈V · ε ‖ E ‖ ε ‖ (S ′,E ′,C ′,D′)〉 7−→ 〈V · S ′ ‖ E ′ ‖ C ′ ‖ D′〉

32

SECD Machine

Machine Configuration ::= 〈S ‖ E ‖ C ‖ D〉

S is a stack of values

E is an environment mapping variables to values

C holds a control stack

D holds a machine state

〈S ‖ E ‖ M N · C ‖ D〉 7−→ 〈S ‖ E ‖ N ·M · ap · C ‖ D〉
〈S ‖ E ‖ λx .M · C ‖ D〉 7−→ 〈(E , λx .M) · S ‖ E ‖ C ‖ D〉

〈(E ′, λx .M) · V · S ‖ E ‖ ap · C ‖ D〉 7−→ 〈ε ‖ E ′, x 7→ V ‖ M · ε ‖ (S ,E ,C ,D)〉
〈S ‖ E ‖ x · C ‖ D〉 7−→ 〈E(x) · S ‖ E ‖ C ‖ D〉

〈V · ε ‖ E ‖ ε ‖ (S ′,E ′,C ′,D′)〉 7−→ 〈V · S ′ ‖ E ′ ‖ C ′ ‖ D′〉

32

SECD Machine

Machine Configuration ::= 〈S ‖ E ‖ C ‖ D〉

S is a stack of values

E is an environment mapping variables to values

C holds a control stack

D holds a machine state

〈S ‖ E ‖ M N · C ‖ D〉 7−→ 〈S ‖ E ‖ N ·M · ap · C ‖ D〉
〈S ‖ E ‖ λx .M · C ‖ D〉 7−→ 〈(E , λx .M) · S ‖ E ‖ C ‖ D〉

〈(E ′, λx .M) · V · S ‖ E ‖ ap · C ‖ D〉 7−→ 〈ε ‖ E ′, x 7→ V ‖ M · ε ‖ (S ,E ,C ,D)〉
〈S ‖ E ‖ x · C ‖ D〉 7−→ 〈E(x) · S ‖ E ‖ C ‖ D〉

〈V · ε ‖ E ‖ ε ‖ (S ′,E ′,C ′,D′)〉 7−→ 〈V · S ′ ‖ E ′ ‖ C ′ ‖ D′〉

32

SECD Machine

〈S ‖ E ‖ M N · C ‖ D〉 7−→ 〈S ‖ E ‖ N ·M · ap · C ‖ D〉
〈S ‖ E ‖ λx .M · C ‖ D〉 7−→ 〈(E , λx .M) · S ‖ E ‖ C ‖ D〉

〈(E ′, λx .M) · V · S ‖ E ‖ ap · C ‖ D〉 7−→ 〈ε ‖ E ′, x 7→ V ‖ M · ε ‖ (S ,E ,C ,D)〉
〈S ‖ E ‖ x · C ‖ D〉 7−→ 〈E(x) · S ‖ E ‖ C ‖ D〉

〈V · ε ‖ E ‖ ε ‖ (S ′,E ′,C ′,D′)〉 7−→ 〈V · S ′ ‖ E ′ ‖ C ′ ‖ D′〉

Note:

• Strictly evaluates function arguments

• Right-to-left evaluation order

Can be made call-by-name by adding thunk rules:

〈S ‖ E ‖ M N · C ‖ D〉 7−→ 〈(E ,N) · S ‖ E ‖ M · ap · C ‖ D〉
〈S ‖ E ‖ x · C ‖ D〉 7−→ 〈ε ‖ E ′ ‖ N · ε ‖ (S ,E ,C ,D)〉

where E(x) = (E ′,N)

33

SECD Machine

〈S ‖ E ‖ M N · C ‖ D〉 7−→ 〈S ‖ E ‖ N ·M · ap · C ‖ D〉
〈S ‖ E ‖ λx .M · C ‖ D〉 7−→ 〈(E , λx .M) · S ‖ E ‖ C ‖ D〉

〈(E ′, λx .M) · V · S ‖ E ‖ ap · C ‖ D〉 7−→ 〈ε ‖ E ′, x 7→ V ‖ M · ε ‖ (S ,E ,C ,D)〉
〈S ‖ E ‖ x · C ‖ D〉 7−→ 〈E(x) · S ‖ E ‖ C ‖ D〉

〈V · ε ‖ E ‖ ε ‖ (S ′,E ′,C ′,D′)〉 7−→ 〈V · S ′ ‖ E ′ ‖ C ′ ‖ D′〉

Note:

• Strictly evaluates function arguments

• Right-to-left evaluation order

Can be made call-by-name by adding thunk rules:

〈S ‖ E ‖ M N · C ‖ D〉 7−→ 〈(E ,N) · S ‖ E ‖ M · ap · C ‖ D〉
〈S ‖ E ‖ x · C ‖ D〉 7−→ 〈ε ‖ E ′ ‖ N · ε ‖ (S ,E ,C ,D)〉

where E(x) = (E ′,N)

33

SECD Machine

〈S ‖ E ‖ M N · C ‖ D〉 7−→ 〈S ‖ E ‖ N ·M · ap · C ‖ D〉
〈S ‖ E ‖ λx .M · C ‖ D〉 7−→ 〈(E , λx .M) · S ‖ E ‖ C ‖ D〉

〈(E ′, λx .M) · V · S ‖ E ‖ ap · C ‖ D〉 7−→ 〈ε ‖ E ′, x 7→ V ‖ M · ε ‖ (S ,E ,C ,D)〉
〈S ‖ E ‖ x · C ‖ D〉 7−→ 〈E(x) · S ‖ E ‖ C ‖ D〉

〈V · ε ‖ E ‖ ε ‖ (S ′,E ′,C ′,D′)〉 7−→ 〈V · S ′ ‖ E ′ ‖ C ′ ‖ D′〉

Note:

• Strictly evaluates function arguments

• Right-to-left evaluation order

Can be made call-by-name by adding thunk rules:

〈S ‖ E ‖ M N · C ‖ D〉 7−→ 〈(E ,N) · S ‖ E ‖ M · ap · C ‖ D〉
〈S ‖ E ‖ x · C ‖ D〉 7−→ 〈ε ‖ E ′ ‖ N · ε ‖ (S ,E ,C ,D)〉

where E(x) = (E ′,N)

33

SECD Machine

〈S ‖ E ‖ M N · C ‖ D〉 7−→ 〈S ‖ E ‖ N ·M · ap · C ‖ D〉
〈S ‖ E ‖ λx .M · C ‖ D〉 7−→ 〈(E , λx .M) · S ‖ E ‖ C ‖ D〉

〈(E ′, λx .M) · V · S ‖ E ‖ ap · C ‖ D〉 7−→ 〈ε ‖ E ′, x 7→ V ‖ M · ε ‖ (S ,E ,C ,D)〉
〈S ‖ E ‖ x · C ‖ D〉 7−→ 〈E(x) · S ‖ E ‖ C ‖ D〉

〈V · ε ‖ E ‖ ε ‖ (S ′,E ′,C ′,D′)〉 7−→ 〈V · S ′ ‖ E ′ ‖ C ′ ‖ D′〉

Note:

• Strictly evaluates function arguments

• Right-to-left evaluation order

Can be made call-by-name by adding thunk rules:

〈S ‖ E ‖ M N · C ‖ D〉 7−→ 〈(E ,N) · S ‖ E ‖ M · ap · C ‖ D〉
〈S ‖ E ‖ x · C ‖ D〉 7−→ 〈ε ‖ E ′ ‖ N · ε ‖ (S ,E ,C ,D)〉

where E(x) = (E ′,N)

33

SECD Machine

〈S ‖ E ‖ M N · C ‖ D〉 7−→ 〈S ‖ E ‖ N ·M · ap · C ‖ D〉
〈S ‖ E ‖ λx .M · C ‖ D〉 7−→ 〈(E , λx .M) · S ‖ E ‖ C ‖ D〉

〈(E ′, λx .M) · V · S ‖ E ‖ ap · C ‖ D〉 7−→ 〈ε ‖ E ′, x 7→ V ‖ M · ε ‖ (S ,E ,C ,D)〉
〈S ‖ E ‖ x · C ‖ D〉 7−→ 〈E(x) · S ‖ E ‖ C ‖ D〉

〈V · ε ‖ E ‖ ε ‖ (S ′,E ′,C ′,D′)〉 7−→ 〈V · S ′ ‖ E ′ ‖ C ′ ‖ D′〉

Note:

• Strictly evaluates function arguments

• Right-to-left evaluation order

Can be made call-by-name by adding thunk rules:

〈S ‖ E ‖ M N · C ‖ D〉 7−→ 〈(E ,N) · S ‖ E ‖ M · ap · C ‖ D〉
〈S ‖ E ‖ x · C ‖ D〉 7−→ 〈ε ‖ E ′ ‖ N · ε ‖ (S ,E ,C ,D)〉

where E(x) = (E ′,N)

33

SECD Machine

〈S ‖ E ‖ M N · C ‖ D〉 7−→ 〈S ‖ E ‖ N ·M · ap · C ‖ D〉
〈S ‖ E ‖ λx .M · C ‖ D〉 7−→ 〈(E , λx .M) · S ‖ E ‖ C ‖ D〉

〈(E ′, λx .M) · V · S ‖ E ‖ ap · C ‖ D〉 7−→ 〈ε ‖ E ′, x 7→ V ‖ M · ε ‖ (S ,E ,C ,D)〉
〈S ‖ E ‖ x · C ‖ D〉 7−→ 〈E(x) · S ‖ E ‖ C ‖ D〉

〈V · ε ‖ E ‖ ε ‖ (S ′,E ′,C ′,D′)〉 7−→ 〈V · S ′ ‖ E ′ ‖ C ′ ‖ D′〉

Note:

• Strictly evaluates function arguments

• Right-to-left evaluation order

Can be made call-by-name by adding thunk rules:

〈S ‖ E ‖ M N · C ‖ D〉 7−→ 〈(E ,N) · S ‖ E ‖ M · ap · C ‖ D〉

〈S ‖ E ‖ x · C ‖ D〉 7−→ 〈ε ‖ E ′ ‖ N · ε ‖ (S ,E ,C ,D)〉
where E(x) = (E ′,N)

33

SECD Machine

〈S ‖ E ‖ M N · C ‖ D〉 7−→ 〈S ‖ E ‖ N ·M · ap · C ‖ D〉
〈S ‖ E ‖ λx .M · C ‖ D〉 7−→ 〈(E , λx .M) · S ‖ E ‖ C ‖ D〉

〈(E ′, λx .M) · V · S ‖ E ‖ ap · C ‖ D〉 7−→ 〈ε ‖ E ′, x 7→ V ‖ M · ε ‖ (S ,E ,C ,D)〉
〈S ‖ E ‖ x · C ‖ D〉 7−→ 〈E(x) · S ‖ E ‖ C ‖ D〉

〈V · ε ‖ E ‖ ε ‖ (S ′,E ′,C ′,D′)〉 7−→ 〈V · S ′ ‖ E ′ ‖ C ′ ‖ D′〉

Note:

• Strictly evaluates function arguments

• Right-to-left evaluation order

Can be made call-by-name by adding thunk rules:

〈S ‖ E ‖ M N · C ‖ D〉 7−→ 〈(E ,N) · S ‖ E ‖ M · ap · C ‖ D〉
〈S ‖ E ‖ x · C ‖ D〉 7−→ 〈ε ‖ E ′ ‖ N · ε ‖ (S ,E ,C ,D)〉

where E(x) = (E ′,N)

33

Curried Functions in Machines

The most important operation in the λ-calculus is function
application.

λ-calculus encourages the use of curried functions e.g.
(λx .λy . x + y) 1 2

〈1 · 2 ‖ E ‖ (λx .λy . x + y) · ap · ap ‖ D〉
−→ 〈(E , λx .λy . x + y) · 1 · 2 ‖ E ‖ ap · ap ‖ D〉
−→ 〈‖ E , x 7→ 1 ‖ λy . x + y ‖ (2,E , ap,D)〉
−→ 〈((E , x 7→ 1), λy . x + y) ‖ E , x 7→ 1 ‖‖ (2,E , ap,D)〉

The closure ((E , x 7→ 1), λy . x + y) is unnecessary!

34

Curried Functions in Machines

The most important operation in the λ-calculus is function
application.

λ-calculus encourages the use of curried functions e.g.
(λx .λy . x + y) 1 2

〈1 · 2 ‖ E ‖ (λx .λy . x + y) · ap · ap ‖ D〉
−→ 〈(E , λx .λy . x + y) · 1 · 2 ‖ E ‖ ap · ap ‖ D〉
−→ 〈‖ E , x 7→ 1 ‖ λy . x + y ‖ (2,E , ap,D)〉
−→ 〈((E , x 7→ 1), λy . x + y) ‖ E , x 7→ 1 ‖‖ (2,E , ap,D)〉

The closure ((E , x 7→ 1), λy . x + y) is unnecessary!

34

Curried Functions in Machines

The most important operation in the λ-calculus is function
application.

λ-calculus encourages the use of curried functions e.g.
(λx .λy . x + y) 1 2

〈1 · 2 ‖ E ‖ (λx .λy . x + y) · ap · ap ‖ D〉
−→ 〈(E , λx .λy . x + y) · 1 · 2 ‖ E ‖ ap · ap ‖ D〉
−→ 〈‖ E , x 7→ 1 ‖ λy . x + y ‖ (2,E , ap,D)〉
−→ 〈((E , x 7→ 1), λy . x + y) ‖ E , x 7→ 1 ‖‖ (2,E , ap,D)〉

The closure ((E , x 7→ 1), λy . x + y) is unnecessary!

34

Curried Functions in Machines

The most important operation in the λ-calculus is function
application.

λ-calculus encourages the use of curried functions e.g.
(λx .λy . x + y) 1 2

〈1 · 2 ‖ E ‖ (λx .λy . x + y) · ap · ap ‖ D〉

−→ 〈(E , λx .λy . x + y) · 1 · 2 ‖ E ‖ ap · ap ‖ D〉
−→ 〈‖ E , x 7→ 1 ‖ λy . x + y ‖ (2,E , ap,D)〉
−→ 〈((E , x 7→ 1), λy . x + y) ‖ E , x 7→ 1 ‖‖ (2,E , ap,D)〉

The closure ((E , x 7→ 1), λy . x + y) is unnecessary!

34

Curried Functions in Machines

The most important operation in the λ-calculus is function
application.

λ-calculus encourages the use of curried functions e.g.
(λx .λy . x + y) 1 2

〈1 · 2 ‖ E ‖ (λx .λy . x + y) · ap · ap ‖ D〉
−→ 〈(E , λx .λy . x + y) · 1 · 2 ‖ E ‖ ap · ap ‖ D〉

−→ 〈‖ E , x 7→ 1 ‖ λy . x + y ‖ (2,E , ap,D)〉
−→ 〈((E , x 7→ 1), λy . x + y) ‖ E , x 7→ 1 ‖‖ (2,E , ap,D)〉

The closure ((E , x 7→ 1), λy . x + y) is unnecessary!

34

Curried Functions in Machines

The most important operation in the λ-calculus is function
application.

λ-calculus encourages the use of curried functions e.g.
(λx .λy . x + y) 1 2

〈1 · 2 ‖ E ‖ (λx .λy . x + y) · ap · ap ‖ D〉
−→ 〈(E , λx .λy . x + y) · 1 · 2 ‖ E ‖ ap · ap ‖ D〉
−→ 〈‖ E , x 7→ 1 ‖ λy . x + y ‖ (2,E , ap,D)〉

−→ 〈((E , x 7→ 1), λy . x + y) ‖ E , x 7→ 1 ‖‖ (2,E , ap,D)〉

The closure ((E , x 7→ 1), λy . x + y) is unnecessary!

34

Curried Functions in Machines

The most important operation in the λ-calculus is function
application.

λ-calculus encourages the use of curried functions e.g.
(λx .λy . x + y) 1 2

〈1 · 2 ‖ E ‖ (λx .λy . x + y) · ap · ap ‖ D〉
−→ 〈(E , λx .λy . x + y) · 1 · 2 ‖ E ‖ ap · ap ‖ D〉
−→ 〈‖ E , x 7→ 1 ‖ λy . x + y ‖ (2,E , ap,D)〉
−→ 〈((E , x 7→ 1), λy . x + y) ‖ E , x 7→ 1 ‖‖ (2,E , ap,D)〉

The closure ((E , x 7→ 1), λy . x + y) is unnecessary!

34

Curried Functions in Machines

The most important operation in the λ-calculus is function
application.

λ-calculus encourages the use of curried functions e.g.
(λx .λy . x + y) 1 2

〈1 · 2 ‖ E ‖ (λx .λy . x + y) · ap · ap ‖ D〉
−→ 〈(E , λx .λy . x + y) · 1 · 2 ‖ E ‖ ap · ap ‖ D〉
−→ 〈‖ E , x 7→ 1 ‖ λy . x + y ‖ (2,E , ap,D)〉
−→ 〈((E , x 7→ 1), λy . x + y) ‖ E , x 7→ 1 ‖‖ (2,E , ap,D)〉

The closure ((E , x 7→ 1), λy . x + y) is unnecessary!

34

Multi-arity Function Calls

The STG (GHC) and ZINC (Ocaml) machines were designed with fast
curried calls in mind.

Multiple arguments are pushed on the stack.

〈Eval (f x0 · · · xn) E ‖ A ‖ U ‖ H〉 7−→ 〈Enter E(f) ‖ E(x0) · · ·E(xn) · A ‖ U ‖ H〉

Entering a closure:

〈Enter l ‖ A ‖ U ‖ H〉 7−→ 〈Eval M E ‖ ε ‖ (A, l) · U ‖ H〉
where H(l) = (E ,M)

〈Enter l ‖ V · A ‖ U ‖ H〉 7−→ 〈Eval M (E , x 7→ V) ‖ A ‖ U ‖ H〉
where H(l) = (E , λx .M)

|V | = |x |

〈Enter l ‖ V ‖ (A′, l ′) · U ‖ H〉 7−→ 〈Enter l ‖ V · A′ ‖ U ‖ H〉
where H(l) = (E , λx .M)

|V | < |x |
H′ = H[l ′ 7→ ((E , x 7→ V , f 7→ l), f x)]

35

Multi-arity Function Calls

The STG (GHC) and ZINC (Ocaml) machines were designed with fast
curried calls in mind.

Multiple arguments are pushed on the stack.

〈Eval (f x0 · · · xn) E ‖ A ‖ U ‖ H〉 7−→ 〈Enter E(f) ‖ E(x0) · · ·E(xn) · A ‖ U ‖ H〉

Entering a closure:

〈Enter l ‖ A ‖ U ‖ H〉 7−→ 〈Eval M E ‖ ε ‖ (A, l) · U ‖ H〉
where H(l) = (E ,M)

〈Enter l ‖ V · A ‖ U ‖ H〉 7−→ 〈Eval M (E , x 7→ V) ‖ A ‖ U ‖ H〉
where H(l) = (E , λx .M)

|V | = |x |

〈Enter l ‖ V ‖ (A′, l ′) · U ‖ H〉 7−→ 〈Enter l ‖ V · A′ ‖ U ‖ H〉
where H(l) = (E , λx .M)

|V | < |x |
H′ = H[l ′ 7→ ((E , x 7→ V , f 7→ l), f x)]

35

Multi-arity Function Calls

The STG (GHC) and ZINC (Ocaml) machines were designed with fast
curried calls in mind.

Multiple arguments are pushed on the stack.

〈Eval (f x0 · · · xn) E ‖ A ‖ U ‖ H〉 7−→ 〈Enter E(f) ‖ E(x0) · · ·E(xn) · A ‖ U ‖ H〉

Entering a closure:

〈Enter l ‖ A ‖ U ‖ H〉 7−→ 〈Eval M E ‖ ε ‖ (A, l) · U ‖ H〉
where H(l) = (E ,M)

〈Enter l ‖ V · A ‖ U ‖ H〉 7−→ 〈Eval M (E , x 7→ V) ‖ A ‖ U ‖ H〉
where H(l) = (E , λx .M)

|V | = |x |

〈Enter l ‖ V ‖ (A′, l ′) · U ‖ H〉 7−→ 〈Enter l ‖ V · A′ ‖ U ‖ H〉
where H(l) = (E , λx .M)

|V | < |x |
H′ = H[l ′ 7→ ((E , x 7→ V , f 7→ l), f x)]

35

Multi-arity Function Calls

The STG (GHC) and ZINC (Ocaml) machines were designed with fast
curried calls in mind.

Multiple arguments are pushed on the stack.

〈Eval (f x0 · · · xn) E ‖ A ‖ U ‖ H〉 7−→ 〈Enter E(f) ‖ E(x0) · · ·E(xn) · A ‖ U ‖ H〉

Entering a closure:

〈Enter l ‖ A ‖ U ‖ H〉 7−→ 〈Eval M E ‖ ε ‖ (A, l) · U ‖ H〉
where H(l) = (E ,M)

〈Enter l ‖ V · A ‖ U ‖ H〉 7−→ 〈Eval M (E , x 7→ V) ‖ A ‖ U ‖ H〉
where H(l) = (E , λx .M)

|V | = |x |

〈Enter l ‖ V ‖ (A′, l ′) · U ‖ H〉 7−→ 〈Enter l ‖ V · A′ ‖ U ‖ H〉
where H(l) = (E , λx .M)

|V | < |x |
H′ = H[l ′ 7→ ((E , x 7→ V , f 7→ l), f x)]

35

Multi-arity Function Calls

The STG (GHC) and ZINC (Ocaml) machines were designed with fast
curried calls in mind.

Multiple arguments are pushed on the stack.

〈Eval (f x0 · · · xn) E ‖ A ‖ U ‖ H〉 7−→ 〈Enter E(f) ‖ E(x0) · · ·E(xn) · A ‖ U ‖ H〉

Entering a closure:

〈Enter l ‖ A ‖ U ‖ H〉 7−→ 〈Eval M E ‖ ε ‖ (A, l) · U ‖ H〉
where H(l) = (E ,M)

〈Enter l ‖ V · A ‖ U ‖ H〉 7−→ 〈Eval M (E , x 7→ V) ‖ A ‖ U ‖ H〉
where H(l) = (E , λx .M)

|V | = |x |

〈Enter l ‖ V ‖ (A′, l ′) · U ‖ H〉 7−→ 〈Enter l ‖ V · A′ ‖ U ‖ H〉
where H(l) = (E , λx .M)

|V | < |x |
H′ = H[l ′ 7→ ((E , x 7→ V , f 7→ l), f x)]

35

Multi-arity Function Calls

The STG (GHC) and ZINC (Ocaml) machines were designed with fast
curried calls in mind.

Multiple arguments are pushed on the stack.

〈Eval (f x0 · · · xn) E ‖ A ‖ U ‖ H〉 7−→ 〈Enter E(f) ‖ E(x0) · · ·E(xn) · A ‖ U ‖ H〉

Entering a closure:

〈Enter l ‖ A ‖ U ‖ H〉 7−→ 〈Eval M E ‖ ε ‖ (A, l) · U ‖ H〉
where H(l) = (E ,M)

〈Enter l ‖ V · A ‖ U ‖ H〉 7−→ 〈Eval M (E , x 7→ V) ‖ A ‖ U ‖ H〉
where H(l) = (E , λx .M)

|V | = |x |

〈Enter l ‖ V ‖ (A′, l ′) · U ‖ H〉 7−→ 〈Enter l ‖ V · A′ ‖ U ‖ H〉
where H(l) = (E , λx .M)

|V | < |x |
H′ = H[l ′ 7→ ((E , x 7→ V , f 7→ l), f x)]

35

Multi-arity Function Calls

The STG (GHC) and ZINC (Ocaml) machines were designed with fast
curried calls in mind.

Multiple arguments are pushed on the stack.

〈Eval (f x0 · · · xn) E ‖ A ‖ U ‖ H〉 7−→ 〈Enter E(f) ‖ E(x0) · · ·E(xn) · A ‖ U ‖ H〉

Entering a closure:

〈Enter l ‖ A ‖ U ‖ H〉 7−→ 〈Eval M E ‖ ε ‖ (A, l) · U ‖ H〉
where H(l) = (E ,M)

〈Enter l ‖ V · A ‖ U ‖ H〉 7−→ 〈Eval M (E , x 7→ V) ‖ A ‖ U ‖ H〉
where H(l) = (E , λx .M)

|V | = |x |

〈Enter l ‖ V ‖ (A′, l ′) · U ‖ H〉 7−→ 〈Enter l ‖ V · A′ ‖ U ‖ H〉
where H(l) = (E , λx .M)

|V | < |x |
H′ = H[l ′ 7→ ((E , x 7→ V , f 7→ l), f x)]

35

Multi-arity Function Calls

The STG (GHC) and ZINC (Ocaml) machines were designed with fast
curried calls in mind.

Multiple arguments are pushed on the stack.

〈Eval (f x0 · · · xn) E ‖ A ‖ U ‖ H〉 7−→ 〈Enter E(f) ‖ E(x0) · · ·E(xn) · A ‖ U ‖ H〉

Entering a closure:

〈Enter l ‖ A ‖ U ‖ H〉 7−→ 〈Eval M E ‖ ε ‖ (A, l) · U ‖ H〉
where H(l) = (E ,M)

〈Enter l ‖ V · A ‖ U ‖ H〉 7−→ 〈Eval M (E , x 7→ V) ‖ A ‖ U ‖ H〉
where H(l) = (E , λx .M)

|V | = |x |

〈Enter l ‖ V ‖ (A′, l ′) · U ‖ H〉 7−→ 〈Enter l ‖ V · A′ ‖ U ‖ H〉
where H(l) = (E , λx .M)

|V | < |x |
H′ = H[l ′ 7→ ((E , x 7→ V , f 7→ l), f x)]

35

Abstract Machine Recap

Abstract machines keep track of where they are in the
computation.

Multi-arity function calls are important for functional
languages.They can be accomplished with runtime argument
checking.

The differences in evaluation strategy:

• The number of closures

• Update stacks for call-by-need

36

Abstract Machine Recap

Abstract machines keep track of where they are in the
computation.

Multi-arity function calls are important for functional
languages.They can be accomplished with runtime argument
checking.

The differences in evaluation strategy:

• The number of closures

• Update stacks for call-by-need

36

Abstract Machine Recap

Abstract machines keep track of where they are in the
computation.

Multi-arity function calls are important for functional
languages.

They can be accomplished with runtime argument
checking.

The differences in evaluation strategy:

• The number of closures

• Update stacks for call-by-need

36

Abstract Machine Recap

Abstract machines keep track of where they are in the
computation.

Multi-arity function calls are important for functional
languages.They can be accomplished with runtime argument
checking.

The differences in evaluation strategy:

• The number of closures

• Update stacks for call-by-need

36

Abstract Machine Recap

Abstract machines keep track of where they are in the
computation.

Multi-arity function calls are important for functional
languages.They can be accomplished with runtime argument
checking.

The differences in evaluation strategy:

• The number of closures

• Update stacks for call-by-need

36

Abstract Machine Recap

Abstract machines keep track of where they are in the
computation.

Multi-arity function calls are important for functional
languages.They can be accomplished with runtime argument
checking.

The differences in evaluation strategy:

• The number of closures

• Update stacks for call-by-need

36

Abstract Machine Recap

Abstract machines keep track of where they are in the
computation.

Multi-arity function calls are important for functional
languages.They can be accomplished with runtime argument
checking.

The differences in evaluation strategy:

• The number of closures

• Update stacks for call-by-need

36

Compilation through
Intermediate Languages

37

The structure of modern functional compilers involves several
intermediate languages:

SML

System F

ΛCPS

Λclos

Λalloc

ASM

TC/Desugar

CPS

Clos. Conv.

Explicit Alloc.

Code Gen.

Haskell

System FCJ

STG

Cmm

ASM

TC/Desugar

Norm./Erasure

Code Gen.

Instr. Select.

Each language has its use:

• Necessity, required by target machine/language
(closure-conversion)

• Flexibility, easier to perform optimizations (CPS)

• Generality, can be used to unify evaluation strategies
(thunking,call-by-push-value)

38

The structure of modern functional compilers involves several
intermediate languages:

SML

System F

ΛCPS

Λclos

Λalloc

ASM

TC/Desugar

CPS

Clos. Conv.

Explicit Alloc.

Code Gen.

Haskell

System FCJ

STG

Cmm

ASM

TC/Desugar

Norm./Erasure

Code Gen.

Instr. Select.

Each language has its use:

• Necessity, required by target machine/language
(closure-conversion)

• Flexibility, easier to perform optimizations (CPS)

• Generality, can be used to unify evaluation strategies
(thunking,call-by-push-value)

38

The structure of modern functional compilers involves several
intermediate languages:

SML

System F

ΛCPS

Λclos

Λalloc

ASM

TC/Desugar

CPS

Clos. Conv.

Explicit Alloc.

Code Gen.

Haskell

System FCJ

STG

Cmm

ASM

TC/Desugar

Norm./Erasure

Code Gen.

Instr. Select.

Each language has its use:

• Necessity, required by target machine/language
(closure-conversion)

• Flexibility, easier to perform optimizations (CPS)

• Generality, can be used to unify evaluation strategies
(thunking,call-by-push-value)

38

The structure of modern functional compilers involves several
intermediate languages:

SML

System F

ΛCPS

Λclos

Λalloc

ASM

TC/Desugar

CPS

Clos. Conv.

Explicit Alloc.

Code Gen.

Haskell

System FCJ

STG

Cmm

ASM

TC/Desugar

Norm./Erasure

Code Gen.

Instr. Select.

Each language has its use:

• Necessity, required by target machine/language
(closure-conversion)

• Flexibility, easier to perform optimizations (CPS)

• Generality, can be used to unify evaluation strategies
(thunking,call-by-push-value)

38

The structure of modern functional compilers involves several
intermediate languages:

SML

System F

ΛCPS

Λclos

Λalloc

ASM

TC/Desugar

CPS

Clos. Conv.

Explicit Alloc.

Code Gen.

Haskell

System FCJ

STG

Cmm

ASM

TC/Desugar

Norm./Erasure

Code Gen.

Instr. Select.

Each language has its use:

• Necessity, required by target machine/language
(closure-conversion)

• Flexibility, easier to perform optimizations (CPS)

• Generality, can be used to unify evaluation strategies
(thunking,call-by-push-value)

38

The structure of modern functional compilers involves several
intermediate languages:

SML

System F

ΛCPS

Λclos

Λalloc

ASM

TC/Desugar

CPS

Clos. Conv.

Explicit Alloc.

Code Gen.

Haskell

System FCJ

STG

Cmm

ASM

TC/Desugar

Norm./Erasure

Code Gen.

Instr. Select.

Each language has its use:

• Necessity, required by target machine/language
(closure-conversion)

• Flexibility, easier to perform optimizations (CPS)

• Generality, can be used to unify evaluation strategies
(thunking,call-by-push-value)

38

The structure of modern functional compilers involves several
intermediate languages:

SML

System F

ΛCPS

Λclos

Λalloc

ASM

TC/Desugar

CPS

Clos. Conv.

Explicit Alloc.

Code Gen.

Haskell

System FCJ

STG

Cmm

ASM

TC/Desugar

Norm./Erasure

Code Gen.

Instr. Select.

Each language has its use:

• Necessity, required by target machine/language
(closure-conversion)

• Flexibility, easier to perform optimizations (CPS)

• Generality, can be used to unify evaluation strategies
(thunking,call-by-push-value)

38

Closure-conversion

λ-calculus functions are higher-order and can contain free variables.

C functions are “global” and only know of their formal parameters.

Closure-conversion turns the former into the latter.

39

Closure-conversion

λ-calculus functions are higher-order and can contain free variables.

C functions are “global” and only know of their formal parameters.

Closure-conversion turns the former into the latter.

39

Closure-conversion

λ-calculus functions are higher-order and can contain free variables.

C functions are “global” and only know of their formal parameters.

Closure-conversion turns the former into the latter.

39

Closure-conversion

λ-calculus functions are higher-order and can contain free variables.

C functions are “global” and only know of their formal parameters.

Closure-conversion turns the former into the latter.

39

Closure-conversion

The transformation works by turning functions into a data
structure containing a product of free variables and a combinator.

CCJλx .MK = ((y0, . . . , yn), λ((y0, . . . , yn), x).CCJMK)
where y0, . . . , yn = FV(λx .M)

CCJM NK = case CCJMK of (e, f)→ f (e,CCJNK)

In our recent work:

• Extend to non-strict languages by adding thunk
closure-conversion

• Show that closure-conversion is only correct and useful if the
target language is strict with closed functions

40

Closure-conversion

The transformation works by turning functions into a data
structure containing a product of free variables and a combinator.

CCJλx .MK = ((y0, . . . , yn), λ((y0, . . . , yn), x).CCJMK)
where y0, . . . , yn = FV(λx .M)

CCJM NK = case CCJMK of (e, f)→ f (e,CCJNK)

In our recent work:

• Extend to non-strict languages by adding thunk
closure-conversion

• Show that closure-conversion is only correct and useful if the
target language is strict with closed functions

40

Closure-conversion

The transformation works by turning functions into a data
structure containing a product of free variables and a combinator.

CCJλx .MK = ((y0, . . . , yn), λ((y0, . . . , yn), x).CCJMK)
where y0, . . . , yn = FV(λx .M)

CCJM NK = case CCJMK of (e, f)→ f (e,CCJNK)

In our recent work:

• Extend to non-strict languages by adding thunk
closure-conversion

• Show that closure-conversion is only correct and useful if the
target language is strict with closed functions

40

Closure-conversion

The transformation works by turning functions into a data
structure containing a product of free variables and a combinator.

CCJλx .MK = ((y0, . . . , yn), λ((y0, . . . , yn), x).CCJMK)
where y0, . . . , yn = FV(λx .M)

CCJM NK = case CCJMK of (e, f)→ f (e,CCJNK)

In our recent work:

• Extend to non-strict languages by adding thunk
closure-conversion

• Show that closure-conversion is only correct and useful if the
target language is strict with closed functions

40

Closure-conversion

The transformation works by turning functions into a data
structure containing a product of free variables and a combinator.

CCJλx .MK = ((y0, . . . , yn), λ((y0, . . . , yn), x).CCJMK)
where y0, . . . , yn = FV(λx .M)

CCJM NK = case CCJMK of (e, f)→ f (e,CCJNK)

In our recent work:

• Extend to non-strict languages by adding thunk
closure-conversion

• Show that closure-conversion is only correct and useful if the
target language is strict with closed functions

40

Closure-conversion

The transformation works by turning functions into a data
structure containing a product of free variables and a combinator.

CCJλx .MK = ((y0, . . . , yn), λ((y0, . . . , yn), x).CCJMK)
where y0, . . . , yn = FV(λx .M)

CCJM NK = case CCJMK of (e, f)→ f (e,CCJNK)

In our recent work:

• Extend to non-strict languages by adding thunk
closure-conversion

• Show that closure-conversion is only correct and useful if the
target language is strict with closed functions

40

Continuation-Passing Style

The call-by-value β-rule restricts inlining:

(λx .M) V −→βV M[V /x]

After the CPS transformation every function is applied to a value:

KVJxK = λk . k x
KVJλx .MK = λk . k (λx .KVJMK)
KVJM NK = λk .KVJMK (λm.KVJNK (λn.m n k))

In call-by-name, β always applies.

In call-by-need, inline with β can result in a loss of sharing.

41

Continuation-Passing Style

The call-by-value β-rule restricts inlining:

(λx .M) V −→βV M[V /x]

After the CPS transformation every function is applied to a value:

KVJxK = λk . k x
KVJλx .MK = λk . k (λx .KVJMK)
KVJM NK = λk .KVJMK (λm.KVJNK (λn.m n k))

In call-by-name, β always applies.

In call-by-need, inline with β can result in a loss of sharing.

41

Continuation-Passing Style

The call-by-value β-rule restricts inlining:

(λx .M) V −→βV M[V /x]

After the CPS transformation every function is applied to a value:

KVJxK = λk . k x
KVJλx .MK = λk . k (λx .KVJMK)
KVJM NK = λk .KVJMK (λm.KVJNK (λn.m n k))

In call-by-name, β always applies.

In call-by-need, inline with β can result in a loss of sharing.

41

Continuation-Passing Style

The call-by-value β-rule restricts inlining:

(λx .M) V −→βV M[V /x]

After the CPS transformation every function is applied to a value:

KVJxK = λk . k x
KVJλx .MK = λk . k (λx .KVJMK)
KVJM NK = λk .KVJMK (λm.KVJNK (λn.m n k))

In call-by-name, β always applies.

In call-by-need, inline with β can result in a loss of sharing.

41

Continuation-Passing Style

The call-by-value β-rule restricts inlining:

(λx .M) V −→βV M[V /x]

After the CPS transformation every function is applied to a value:

KVJxK = λk . k x
KVJλx .MK = λk . k (λx .KVJMK)
KVJM NK = λk .KVJMK (λm.KVJNK (λn.m n k))

In call-by-name, β always applies.

In call-by-need, inline with β can result in a loss of sharing.

41

Evaluation Strategy Unifying Languages

Call-by-name and call-by-value CPSed programs can run in the
same runtime.

Approaches to unifying evaluation strategies:

• CPS

• Thunking

• Call-by-push-value

42

Evaluation Strategy Unifying Languages

Call-by-name and call-by-value CPSed programs can run in the
same runtime.

Approaches to unifying evaluation strategies:

• CPS

• Thunking

• Call-by-push-value

42

Evaluation Strategy Unifying Languages

Call-by-name and call-by-value CPSed programs can run in the
same runtime.

Approaches to unifying evaluation strategies:

• CPS

• Thunking

• Call-by-push-value

42

Evaluation Strategy Unifying Languages

Call-by-name and call-by-value CPSed programs can run in the
same runtime.

Approaches to unifying evaluation strategies:

• CPS

• Thunking

• Call-by-push-value

42

Thunking

Thunking embeds a call-by-name or call-by-need language in
call-by-value language:

TJxK = force x
TJλx .MK = λx .TJMK
TJM NK = TJMK (delay TJNK)

Whether we have preserved a call-by-name or -need source
depends on the semantics of delay and force:

• Memoizing force for call-by-need

• Non-memoizing for call-by-name

43

Thunking

Thunking embeds a call-by-name or call-by-need language in
call-by-value language:

TJxK = force x
TJλx .MK = λx .TJMK
TJM NK = TJMK (delay TJNK)

Whether we have preserved a call-by-name or -need source
depends on the semantics of delay and force:

• Memoizing force for call-by-need

• Non-memoizing for call-by-name

43

Thunking

Thunking embeds a call-by-name or call-by-need language in
call-by-value language:

TJxK = force x
TJλx .MK = λx .TJMK
TJM NK = TJMK (delay TJNK)

Whether we have preserved a call-by-name or -need source
depends on the semantics of delay and force:

• Memoizing force for call-by-need

• Non-memoizing for call-by-name

43

Thunking

Thunking embeds a call-by-name or call-by-need language in
call-by-value language:

TJxK = force x
TJλx .MK = λx .TJMK
TJM NK = TJMK (delay TJNK)

Whether we have preserved a call-by-name or -need source
depends on the semantics of delay and force:

• Memoizing force for call-by-need

• Non-memoizing for call-by-name

43

Thunking

Thunking embeds a call-by-name or call-by-need language in
call-by-value language:

TJxK = force x
TJλx .MK = λx .TJMK
TJM NK = TJMK (delay TJNK)

Whether we have preserved a call-by-name or -need source
depends on the semantics of delay and force:

• Memoizing force for call-by-need

• Non-memoizing for call-by-name

43

Call-by-push-value

Call-by-push-value subsumes call-by-value and call-by-name; both
compile into it.

For optimization, it has an always applicable β law for inlining
applications.

It separates values (being) from computations (doing):

V ,W ∈ Value ::= x | thunk M | c
M,N ∈ Computation ::= return V | λx .M | M V | force V

| let x = V in M
| M to x in N

44

Call-by-push-value

Call-by-push-value subsumes call-by-value and call-by-name

; both
compile into it.

For optimization, it has an always applicable β law for inlining
applications.

It separates values (being) from computations (doing):

V ,W ∈ Value ::= x | thunk M | c
M,N ∈ Computation ::= return V | λx .M | M V | force V

| let x = V in M
| M to x in N

44

Call-by-push-value

Call-by-push-value subsumes call-by-value and call-by-name; both
compile into it.

For optimization, it has an always applicable β law for inlining
applications.

It separates values (being) from computations (doing):

V ,W ∈ Value ::= x | thunk M | c
M,N ∈ Computation ::= return V | λx .M | M V | force V

| let x = V in M
| M to x in N

44

Call-by-push-value

Call-by-push-value subsumes call-by-value and call-by-name; both
compile into it.

For optimization, it has an always applicable β law for inlining
applications.

It separates values (being) from computations (doing):

V ,W ∈ Value ::= x | thunk M | c
M,N ∈ Computation ::= return V | λx .M | M V | force V

| let x = V in M
| M to x in N

44

Call-by-push-value

Call-by-push-value subsumes call-by-value and call-by-name; both
compile into it.

For optimization, it has an always applicable β law for inlining
applications.

It separates values (being) from computations (doing):

V ,W ∈ Value ::= x | thunk M | c
M,N ∈ Computation ::= return V | λx .M | M V | force V

| let x = V in M
| M to x in N

44

Call-by-push-value

Call-by-push-value subsumes call-by-value and call-by-name; both
compile into it.

For optimization, it has an always applicable β law for inlining
applications.

It separates values (being) from computations (doing):

V ,W ∈ Value ::= x | thunk M | c

M,N ∈ Computation ::= return V | λx .M | M V | force V
| let x = V in M
| M to x in N

44

Call-by-push-value

Call-by-push-value subsumes call-by-value and call-by-name; both
compile into it.

For optimization, it has an always applicable β law for inlining
applications.

It separates values (being) from computations (doing):

V ,W ∈ Value ::= x | thunk M | c
M,N ∈ Computation ::= return V | λx .M | M V | force V

| let x = V in M
| M to x in N

44

Summary

In deriving more efficient implementations of functions:

• Environments replace substitutions

• Machines with continuations replace evaluation contexts

• Intermediate languages are added because they are sometimes
necessary, they are for optimizations, and/or they compile
more programs.

Regarding the difference in evaluation strategies:

• Non-strict strategies require thunk closures in addition to
function closures.

• Call-by-need implementations require “heaps” and update
frames.

45

Summary

In deriving more efficient implementations of functions:

• Environments replace substitutions

• Machines with continuations replace evaluation contexts

• Intermediate languages are added because they are sometimes
necessary, they are for optimizations, and/or they compile
more programs.

Regarding the difference in evaluation strategies:

• Non-strict strategies require thunk closures in addition to
function closures.

• Call-by-need implementations require “heaps” and update
frames.

45

Summary

In deriving more efficient implementations of functions:

• Environments replace substitutions

• Machines with continuations replace evaluation contexts

• Intermediate languages are added because they are sometimes
necessary, they are for optimizations, and/or they compile
more programs.

Regarding the difference in evaluation strategies:

• Non-strict strategies require thunk closures in addition to
function closures.

• Call-by-need implementations require “heaps” and update
frames.

45

Summary

In deriving more efficient implementations of functions:

• Environments replace substitutions

• Machines with continuations replace evaluation contexts

• Intermediate languages are added because they are sometimes
necessary,

they are for optimizations, and/or they compile
more programs.

Regarding the difference in evaluation strategies:

• Non-strict strategies require thunk closures in addition to
function closures.

• Call-by-need implementations require “heaps” and update
frames.

45

Summary

In deriving more efficient implementations of functions:

• Environments replace substitutions

• Machines with continuations replace evaluation contexts

• Intermediate languages are added because they are sometimes
necessary, they are for optimizations,

and/or they compile
more programs.

Regarding the difference in evaluation strategies:

• Non-strict strategies require thunk closures in addition to
function closures.

• Call-by-need implementations require “heaps” and update
frames.

45

Summary

In deriving more efficient implementations of functions:

• Environments replace substitutions

• Machines with continuations replace evaluation contexts

• Intermediate languages are added because they are sometimes
necessary, they are for optimizations, and/or they compile
more programs.

Regarding the difference in evaluation strategies:

• Non-strict strategies require thunk closures in addition to
function closures.

• Call-by-need implementations require “heaps” and update
frames.

45

Summary

In deriving more efficient implementations of functions:

• Environments replace substitutions

• Machines with continuations replace evaluation contexts

• Intermediate languages are added because they are sometimes
necessary, they are for optimizations, and/or they compile
more programs.

Regarding the difference in evaluation strategies:

• Non-strict strategies require thunk closures in addition to
function closures.

• Call-by-need implementations require “heaps” and update
frames.

45

Summary

In deriving more efficient implementations of functions:

• Environments replace substitutions

• Machines with continuations replace evaluation contexts

• Intermediate languages are added because they are sometimes
necessary, they are for optimizations, and/or they compile
more programs.

Regarding the difference in evaluation strategies:

• Non-strict strategies require thunk closures in addition to
function closures.

• Call-by-need implementations require “heaps” and update
frames.

45

Summary

In deriving more efficient implementations of functions:

• Environments replace substitutions

• Machines with continuations replace evaluation contexts

• Intermediate languages are added because they are sometimes
necessary, they are for optimizations, and/or they compile
more programs.

Regarding the difference in evaluation strategies:

• Non-strict strategies require thunk closures in addition to
function closures.

• Call-by-need implementations require “heaps” and update
frames.

45

In the Paper

More details on the following:

• De Bruijn notation and Explicit substitutions

• Lazy big-step environment semantics

• The G-, ZINC, and Krivine machines

• (Non)-memoizing thunk and call-by-push-value semantics

• Closure-conversion of thunks

A section on correctness:

• Machine Reflection

• Type preservation of transformations

• Logical relations for closure-conversion

• Issues with reasoning about memoizing heaps

46

In the Paper

More details on the following:

• De Bruijn notation and Explicit substitutions

• Lazy big-step environment semantics

• The G-, ZINC, and Krivine machines

• (Non)-memoizing thunk and call-by-push-value semantics

• Closure-conversion of thunks

A section on correctness:

• Machine Reflection

• Type preservation of transformations

• Logical relations for closure-conversion

• Issues with reasoning about memoizing heaps

46

In the Paper

More details on the following:

• De Bruijn notation and Explicit substitutions

• Lazy big-step environment semantics

• The G-, ZINC, and Krivine machines

• (Non)-memoizing thunk and call-by-push-value semantics

• Closure-conversion of thunks

A section on correctness:

• Machine Reflection

• Type preservation of transformations

• Logical relations for closure-conversion

• Issues with reasoning about memoizing heaps

46

In the Paper

More details on the following:

• De Bruijn notation and Explicit substitutions

• Lazy big-step environment semantics

• The G-, ZINC, and Krivine machines

• (Non)-memoizing thunk and call-by-push-value semantics

• Closure-conversion of thunks

A section on correctness:

• Machine Reflection

• Type preservation of transformations

• Logical relations for closure-conversion

• Issues with reasoning about memoizing heaps

46

In the Paper

More details on the following:

• De Bruijn notation and Explicit substitutions

• Lazy big-step environment semantics

• The G-, ZINC, and Krivine machines

• (Non)-memoizing thunk and call-by-push-value semantics

• Closure-conversion of thunks

A section on correctness:

• Machine Reflection

• Type preservation of transformations

• Logical relations for closure-conversion

• Issues with reasoning about memoizing heaps

46

In the Paper

More details on the following:

• De Bruijn notation and Explicit substitutions

• Lazy big-step environment semantics

• The G-, ZINC, and Krivine machines

• (Non)-memoizing thunk and call-by-push-value semantics

• Closure-conversion of thunks

A section on correctness:

• Machine Reflection

• Type preservation of transformations

• Logical relations for closure-conversion

• Issues with reasoning about memoizing heaps

46

In the Paper

More details on the following:

• De Bruijn notation and Explicit substitutions

• Lazy big-step environment semantics

• The G-, ZINC, and Krivine machines

• (Non)-memoizing thunk and call-by-push-value semantics

• Closure-conversion of thunks

A section on correctness:

• Machine Reflection

• Type preservation of transformations

• Logical relations for closure-conversion

• Issues with reasoning about memoizing heaps

46

In the Paper

More details on the following:

• De Bruijn notation and Explicit substitutions

• Lazy big-step environment semantics

• The G-, ZINC, and Krivine machines

• (Non)-memoizing thunk and call-by-push-value semantics

• Closure-conversion of thunks

A section on correctness:

• Machine Reflection

• Type preservation of transformations

• Logical relations for closure-conversion

• Issues with reasoning about memoizing heaps

46

In the Paper

More details on the following:

• De Bruijn notation and Explicit substitutions

• Lazy big-step environment semantics

• The G-, ZINC, and Krivine machines

• (Non)-memoizing thunk and call-by-push-value semantics

• Closure-conversion of thunks

A section on correctness:

• Machine Reflection

• Type preservation of transformations

• Logical relations for closure-conversion

• Issues with reasoning about memoizing heaps

46

In the Paper

More details on the following:

• De Bruijn notation and Explicit substitutions

• Lazy big-step environment semantics

• The G-, ZINC, and Krivine machines

• (Non)-memoizing thunk and call-by-push-value semantics

• Closure-conversion of thunks

A section on correctness:

• Machine Reflection

• Type preservation of transformations

• Logical relations for closure-conversion

• Issues with reasoning about memoizing heaps

46

In the Paper

More details on the following:

• De Bruijn notation and Explicit substitutions

• Lazy big-step environment semantics

• The G-, ZINC, and Krivine machines

• (Non)-memoizing thunk and call-by-push-value semantics

• Closure-conversion of thunks

A section on correctness:

• Machine Reflection

• Type preservation of transformations

• Logical relations for closure-conversion

• Issues with reasoning about memoizing heaps

46

Future Work

Our recent work involved non-strict closure-conversions.

Transformed a non-strict language into a strict one out of necessity.

Research directions:

• Partial closure-conversion

• Logical relations for memoizing heaps

Thanks

47

Future Work

Our recent work involved non-strict closure-conversions.

Transformed a non-strict language into a strict one out of necessity.

Research directions:

• Partial closure-conversion

• Logical relations for memoizing heaps

Thanks

47

Future Work

Our recent work involved non-strict closure-conversions.

Transformed a non-strict language into a strict one out of necessity.

Research directions:

• Partial closure-conversion

• Logical relations for memoizing heaps

Thanks

47

Future Work

Our recent work involved non-strict closure-conversions.

Transformed a non-strict language into a strict one out of necessity.

Research directions:

• Partial closure-conversion

• Logical relations for memoizing heaps

Thanks

47

Future Work

Our recent work involved non-strict closure-conversions.

Transformed a non-strict language into a strict one out of necessity.

Research directions:

• Partial closure-conversion

• Logical relations for memoizing heaps

Thanks

47

Future Work

Our recent work involved non-strict closure-conversions.

Transformed a non-strict language into a strict one out of necessity.

Research directions:

• Partial closure-conversion

• Logical relations for memoizing heaps

Thanks

47

48

Reasoning about
Implementations

49

There are many ways to specify a semantics for a program:

Reduction theory

Operational Semantics

Combinator and abstract machines

Compilation to low-level languages

How do we know that these are equivalent methods?

50

There are many ways to specify a semantics for a program:

Reduction theory

Operational Semantics

Combinator and abstract machines

Compilation to low-level languages

How do we know that these are equivalent methods?

50

There are many ways to specify a semantics for a program:

Reduction theory

Operational Semantics

Combinator and abstract machines

Compilation to low-level languages

How do we know that these are equivalent methods?

50

Machine Reflection

Define a translation JCK : Mach→ Λ

Theorem

If C 7−→ C ′, then JCK = JC ′K.

Only shows that machine states respect the source; nothing about
whether equalities of the source are preserved.

51

Machine Reflection

Define a translation JCK : Mach→ Λ

Theorem

If C 7−→ C ′, then JCK = JC ′K.

Only shows that machine states respect the source; nothing about
whether equalities of the source are preserved.

51

Machine Reflection

Define a translation JCK : Mach→ Λ

Theorem

If C 7−→ C ′, then JCK = JC ′K.

Only shows that machine states respect the source; nothing about
whether equalities of the source are preserved.

51

Type Preservation

A type system for a language can guarantee properties of our
source program

Type preservation can give us a typing derivation in our target
language

• Help us prove things like strong normalization

• Type information can inform code-generation and runtime
systems

52

Type Preservation

A type system for a language can guarantee properties of our
source program

Type preservation can give us a typing derivation in our target
language

• Help us prove things like strong normalization

• Type information can inform code-generation and runtime
systems

52

Logical Relations

Proving the correctness of closure-conversion is hard.

e.g.

CCJλf . f xK = (x , λ(x , f). case f of (e, g)→ g (e, x))

• These values are not closely related by our reduction rules

• The parameter f does not behave like a source function

We must discuss relations of values and expressions.

VJτ → σK = {((Σ,V),V) | ∀(W ,W ′) ∈ VJτK.
(〈Σ ‖ V W 〉, 〈ε ‖ π0(V) (π1(V),W)〉) ∈ CJσK}

We found that call-by-name reasoning easily adapted to
call-by-value logical relations.

53

Logical Relations

Proving the correctness of closure-conversion is hard.

e.g.

CCJλf . f xK = (x , λ(x , f). case f of (e, g)→ g (e, x))

• These values are not closely related by our reduction rules

• The parameter f does not behave like a source function

We must discuss relations of values and expressions.

VJτ → σK = {((Σ,V),V) | ∀(W ,W ′) ∈ VJτK.
(〈Σ ‖ V W 〉, 〈ε ‖ π0(V) (π1(V),W)〉) ∈ CJσK}

We found that call-by-name reasoning easily adapted to
call-by-value logical relations.

53

Logical Relations

Proving the correctness of closure-conversion is hard.

e.g.

CCJλf . f xK = (x , λ(x , f). case f of (e, g)→ g (e, x))

• These values are not closely related by our reduction rules

• The parameter f does not behave like a source function

We must discuss relations of values and expressions.

VJτ → σK = {((Σ,V),V) | ∀(W ,W ′) ∈ VJτK.
(〈Σ ‖ V W 〉, 〈ε ‖ π0(V) (π1(V),W)〉) ∈ CJσK}

We found that call-by-name reasoning easily adapted to
call-by-value logical relations.

53

Logical Relations

Proving the correctness of closure-conversion is hard.

e.g.

CCJλf . f xK = (x , λ(x , f). case f of (e, g)→ g (e, x))

• These values are not closely related by our reduction rules

• The parameter f does not behave like a source function

We must discuss relations of values and expressions.

VJτ → σK = {((Σ,V),V) | ∀(W ,W ′) ∈ VJτK.
(〈Σ ‖ V W 〉, 〈ε ‖ π0(V) (π1(V),W)〉) ∈ CJσK}

We found that call-by-name reasoning easily adapted to
call-by-value logical relations.

53

Logical Relations

Proving the correctness of closure-conversion is hard.

e.g.

CCJλf . f xK = (x , λ(x , f). case f of (e, g)→ g (e, x))

• These values are not closely related by our reduction rules

• The parameter f does not behave like a source function

We must discuss relations of values and expressions.

VJτ → σK = {((Σ,V),V) | ∀(W ,W ′) ∈ VJτK.
(〈Σ ‖ V W 〉, 〈ε ‖ π0(V) (π1(V),W)〉) ∈ CJσK}

We found that call-by-name reasoning easily adapted to
call-by-value logical relations.

53

Logical Relations

Proving the correctness of closure-conversion is hard.

e.g.

CCJλf . f xK = (x , λ(x , f). case f of (e, g)→ g (e, x))

• These values are not closely related by our reduction rules

• The parameter f does not behave like a source function

We must discuss relations of values and expressions.

VJτ → σK = {((Σ,V),V) | ∀(W ,W ′) ∈ VJτK.
(〈Σ ‖ V W 〉, 〈ε ‖ π0(V) (π1(V),W)〉) ∈ CJσK}

We found that call-by-name reasoning easily adapted to
call-by-value logical relations.

53

Logical Relations

Proving the correctness of closure-conversion is hard.

e.g.

CCJλf . f xK = (x , λ(x , f). case f of (e, g)→ g (e, x))

• These values are not closely related by our reduction rules

• The parameter f does not behave like a source function

We must discuss relations of values and expressions.

VJτ → σK = {((Σ,V),V) | ∀(W ,W ′) ∈ VJτK.
(〈Σ ‖ V W 〉, 〈ε ‖ π0(V) (π1(V),W)〉) ∈ CJσK}

We found that call-by-name reasoning easily adapted to
call-by-value logical relations.

53

Reasoning about Memoizing Heaps

As big-step and machine semantics for call-by-need require the
addition of heaps.

There are still open questions regarding memoizing heaps:

• Objects are updated within according to the semantics

• In many C dynamic memory, these are unordered structures

• Applies to both delay-force and call-by-need

54

Reasoning about Memoizing Heaps

As big-step and machine semantics for call-by-need require the
addition of heaps.

There are still open questions regarding memoizing heaps:

• Objects are updated within according to the semantics

• In many C dynamic memory, these are unordered structures

• Applies to both delay-force and call-by-need

54

Reasoning about Memoizing Heaps

As big-step and machine semantics for call-by-need require the
addition of heaps.

There are still open questions regarding memoizing heaps:

• Objects are updated within according to the semantics

• In many C dynamic memory, these are unordered structures

• Applies to both delay-force and call-by-need

54

Reasoning about Memoizing Heaps

As big-step and machine semantics for call-by-need require the
addition of heaps.

There are still open questions regarding memoizing heaps:

• Objects are updated within according to the semantics

• In many C dynamic memory, these are unordered structures

• Applies to both delay-force and call-by-need

54

Reasoning about Memoizing Heaps

As big-step and machine semantics for call-by-need require the
addition of heaps.

There are still open questions regarding memoizing heaps:

• Objects are updated within according to the semantics

• In many C dynamic memory, these are unordered structures

• Applies to both delay-force and call-by-need

54

	Reduction Theory
	Operational Semantics
	Combinators and their Machines
	Abstract Machines
	Compilation through Intermediate Languages
	Discussion
	Appendix
	Reasoning about Implementations

