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Abstract. Computer scientists are well-versed in dealing with data struc-
tures. The same cannot be said about their dual: codata. Even though
codata is pervasive in category theory, universal algebra, and logic, the
use of codata for programming has been mainly relegated to represent-
ing infinite objects and processes. Our goal is to demonstrate the ben-
efits of codata as a general-purpose programming abstraction indepen-
dent of any specific language: eager or lazy, statically or dynamically
typed, and functional or object-oriented. While codata is not featured
in many programming languages today, we show how codata can be eas-
ily adopted and implemented by offering simple inter-compilation tech-
niques between data and codata. We believe codata is a common ground
between the functional and object-oriented paradigms; ultimately, we
hope to utilize the Curry-Howard isomorphism to further bridge the gap.
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1 Introduction

Functional programming enjoys a beautiful connection to logic, known as the
Curry-Howard correspondence, or proofs as programs principle [22]; results and
notions about a language are translated to those about proofs, and vice-versa
[17]. In addition to expressing computation as proof transformations, this con-
nection is also fruitful for education: everybody would understand that the as-
sumption “an x is zero” does not mean “every x is zero,” which in turn explains
the subtle typing rules for polymorphism in programs. The typing rules for mod-
ules are even more cryptic, but knowing that they correspond exactly to the rules
for existential quantification certainly gives us more confidence that they are cor-
rect! While not everything useful must have a Curry-Howard correspondence, we
believe finding these delightful coincidences where the same idea is rediscovered
many times in both logic and programming can only be beneficial [43].

One such instance involves codata. In contrast with the mystique it has as
a programming construct, codata is pervasive in mathematics and logic, where
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it arises through the lens of duality. The most visual way to view the duality
is in the categorical diagrams of sums versus products—the defining arrows go
into a sum and come out of a product—and in algebras versus coalgebras [25].
In proof theory, codata has had an impact on theorem proving [5] and on the
foundation of computation via polarity [47, 30]. Polarity recognizes which of two
dialogic actors speaks first: the proponent (who seeks to verify or prove a fact)
or the opponent (who seeks to refute the fact).

The two-sided, interactive view appears all over the study of programming
languages, where data is concerned about how values are constructed and co-
data is concerned about how they are used [15]. Sometimes, this perspective is
readily apparent, like with session types [7] which distinguish internal choice (a
provider’s decision) versus external choice (a client’s decision). But other oc-
currences are more obscure, like in the semantics of PCF (i.e. the call-by-name
λ-calculus with numbers and general recursion). In PCF, the result of evaluating
a program must be of a ground type in order to respect the laws of functions
(namely η) [33]. This is not due to differences between ground types versus
“higher types,” but to the fact that data types are directly observable, whereas
codata types are only indirectly observable via their interface.

Clearly codata has merit in theoretical pursuits; we think it has merit in prac-
tical ones as well. The main application of codata so far has been for represent-
ing infinite objects and coinductive proofs in proof assistants [1, 40]. However,
we believe that codata also makes for an important general-purpose program-
ming feature. Codata is a bridge between the functional and object-oriented
paradigms; a common denominator between the two very different approaches
to programming. On one hand, functional languages are typically rich in data
types—as many as the programmer wants to define via data declarations—but
has a paucity of codata types (usually just function types). On the other hand,
object-oriented languages are rich in codata types—programmer-defined in terms
of classes or interfaces—but a paucity of data types (usually just primitives like
booleans and numbers). We illustrate this point with a collection of example
applications that arise in both styles of programming, including common encod-
ings, demand-driven programming, abstraction, and Hoare-style reasoning.

While codata types can be seen in the shadows behind many examples of
programming—often hand-compiled away by the programmer—not many func-
tional languages have native support for them. To this end, we demonstrate a
pair of simple compilation techniques between a typical core functional language
(with data types) and one with codata. One direction—based on the well-known
visitor pattern from object-oriented programming—simultaneously shows how to
extend an object-oriented language with data types (as is done by Scala) and how
to compile core functional programs to a more object-oriented setting (e.g. tar-
geting a backend like JavaScript or the JVM). The other shows how to add native
codata types to functional languages by reducing them to commonly-supported
data types and how to compile a “pure” object-oriented style of programming to
a functional setting. Both of these techniques are macro-expansions that are not
specific to any particular language, as they work with both statically and dy-



namically typed disciplines, and they preserve the well-typed status of programs
without increasing the complexity of the types involved.

Our claim is that codata is a universal programming feature that has been
thus-far missing or diminished in today’s functional programming languages.
This is too bad, since codata is not just a feature invented for the convenience
of programmers, but a persistent idea that has sprung up over and over from
the study of mathematics, logic, and computation. We aim to demystify codata,
and en route, bridge the wide gulf between the functional and object-oriented
paradigms. Fortunately, it is easy for most mainstream languages to add or
bring out codata today without a radical change to their implementation. But
ultimately, we believe that the languages of the future should incorporate both
data and codata outright. To that end, our contributions are to:

– (Section 2) Illustrate the benefits of codata in both theory and practice: (1) a
decomposition of well-known λ-calculus encodings by inverting the priority of
construction and destruction; (2) a first-class abstraction mechanism; (3) a
method of demand-driven programming; and (4) a static type system for
representing Hoare-style invariants on resource use.

– (Section 3) Provide simple transformations for compiling data to codata,
and vice-versa, which are appropriate for languages with different evaluation
strategies (eager or lazy) and type discipline (static or dynamic).

– (Section 4) Demonstrate various implementations of codata for general-
purpose programming in two ways: (1) an extension of Haskell with codata;
and (2) a prototype language that compiles to several languages of different
evaluation strategies, type disciplines, and paradigms.

2 The Many Faces of Codata

Codata can be used to solve other problems in programming besides represent-
ing infinite objects and processes like streams and servers [1, 40]. We start by
presenting codata as a merger between theory and practice, whereby encodings
of data types in an object-oriented style turn out to be a useful intermediate step
in the usual encodings of data in the λ-calculus. Demand-driven programming is
considered a virtue of lazy languages, but codata is a language-independent tool
for capturing this programming idiom. Codata exactly captures the essence of
procedural abstraction, as achieved with λ-abstractions and objects, with a logi-
cally founded formalism [16]. Specifying pre- and post- conditions of protocols,
which is available in some object systems [14], is straightforward with indexed,
recursive codata types, i.e. objects with guarded methods [41].

2.1 Church Encodings and Object-Oriented Programming

Crucial information structures, like booleans, numbers, and lists can be encoded
in the untyped λ-calculus (a.k.a. Church encodings) or in the typed polymorphic
λ-calculus (a.k.a. Böhm-Berarducci [9] encodings). It is quite remarkable that



data structures can be simulated with just first-class, higher-order functions.
The downside is that these encodings can be obtuse at first blush, and have the
effect of obscuring the original program when everything is written with just λs
and application. For example, the λ-representation of the boolean value True,
the first projection out of a pair, and the constant function K are all expressed
as λx.λy.x, which is not that immediately evocative of its multi-purpose nature.

Object-oriented programmers have also been representing data structures in
terms of objects. This is especially visible in the Smalltalk lineage of languages
like Scala, wherein an objective is that everything that can be an object is. As
it turns out, the object-oriented features needed to perform this representation
technique are exactly those of codata. That is because Church-style encodings
and object-oriented representations of data all involve switching focus from the
way values are built (i.e. introduced) to the way they are used (i.e. eliminated).

Consider the representation of Boolean values as an algebraic data type.
There may be many ways to use a Boolean value. However, it turns out that there
is a most-general eliminator of Booleans: the expression if b then x else y.
This basic construct can be used to define all the other uses for Bools. Instead
of focusing on the constructors True and False let’s then focus on this most-
general form of Bool elimination; this is the essence of the encodings of booleans
in terms of objects. In other words, booleans can be thought of as objects that
implement a single method: If. So that the expression if b then x else y

would instead be written as (b.If x y). We then define the true and false val-
ues in terms of their reaction to If:

true = {If x y → x} false = {If x y → y}

Or alternatively, we can write the same definition using copatterns, popularized
for use in the functional paradigm by Abel et al. [1] by generalizing the usual
pattern-based definition of functions by multiple clauses, as:

true.If x y = x false.If x y = y

This works just like equational definitions by pattern-matching in functional
languages: the expression to the left of the equals sign is the same as the expres-
sion to the right (for any binding of x and y). Either way, the net result is that
(true.If "yes" "no") is "yes", whereas (false.If "yes" "no") is "no".

This covers the object-based presentation of booleans in a dynamically typed
language, but how do static types come into play? In order to give a type descrip-
tion of the above boolean objects, we can use the following interface, analogous
to a Java interface:

codata Bool where If : Bool → (forall a. a → a → a)

This declaration is dual to a data declaration in a functional language: data
declarations define the types of constructors (which produce values of the data
type) and codata declarations define the types of destructors (which consume
values of the codata type) like If. The reason that the If observation introduces
its own polymorphic type a is because an if-then-else might return any type of



result (as long as both branches agree on the type). That way, both the two
objects true and false above are values of the codata type Bool.

At this point, the representation of booleans as codata looks remarkably close
to the encodings of booleans in the λ-calculus! Indeed, the only difference is that
in the λ-calculus we “anonymize” booleans. Since they reply to only one request,
that request name can be dropped. We then arrive at the familiar encodings in
the polymorphic λ-calculus:

Bool = ∀a.a→ a→ a true = Λa.λx:a.λy:a.x false = Λa.λx:a.λy:a.y

In addition, the invocation of the If method just becomes ordinary function
application; b.If x y of type a is written as b a x y. Otherwise, the definition
and behavior of booleans as either codata types or as polymorphic functions are
the same.

This style of inverting the definition of data types—either into specific co-
data types or into polymorphic functions—is also related to another concept
in object-oriented programming. First, consider how a functional programmer
would represent a binary Tree (with integer-labeled leaves) and a walk function
that traverses a tree by converting the labels on all leaves and combining the
results of sub-trees:

data Tree where Leaf : Int → Tree

Branch : Tree → Tree → Tree

walk : (Int → a) → (a → a → a) → Tree → a

walk b f (Leaf x) = b x

walk b f (Branch l r) = f (walk b f l) (walk b f r)

The above code relies on pattern-matching on values of the Tree data type and
higher-order functions b and f for accumulating the result. Now, how might an
object-oriented programmer tackle the problem of traversing a tree-like struc-
ture? The visitor pattern! With this pattern, the programmer specifies a “visitor”
object which contains knowledge of what to do at every node of the tree, and
tree objects must be able to accept a visitor with a method that will recursively
walk down each subcomponent of the tree. In a pure style—which returns an
accumulated result directly instead of using mutable state as a side channel for
results—the visitor pattern for a simple binary tree interface will look like:

codata TreeVisitor a where

VisitLeaf : TreeVisitor a → (Int → a)

VisitBranch : TreeVisitor a → (a → a → a)

codata Tree where

Walk : Tree → (forall a. TreeVisitor a → a)

leaf : Int → Tree

leaf x = {Walk v → v.VisitLeaf x}

branch : Tree → Tree → Tree

branch l r = {Walk v → v.VisitBranch (l.Walk v) (r.Walk v)}



And again, we can write this same code more elegantly, without the need to
break apart the two arguments across the equal sign with a manual abstraction,
using copatterns as:

(leaf x).Walk v = v.VisitLeaf x

(branch l r).Walk v = v.VisitBranch (l.Walk v) (r.Walk v)

Notice how the above code is just an object-oriented presentation of the following
encoding of binary trees into the polymorphic λ-calculus:

Tree = ∀a.TreeVisitor a→ a TreeVisitor a = (Int → a)× (a→ a→ a)

leaf : Int → Tree

leaf (x:Int) = Λa.λv:TreeVisitor a. (fst v) x

branch : ∀a.Tree → Tree → Tree

branch (l:Tree) (r:Tree) = Λa.λv:TreeVisitor a. (snd v) (l a v) (r a v)

The only essential difference between this λ-encoding of trees versus the λ-
encoding of booleans above is currying: the representation of the data type
Tree takes a single product TreeVisitor a of the necessary arguments, whereas
the data type Bool takes the two necessary arguments separately. Besides this
easily-converted difference of currying, the usual Böhm-Berarducci encodings
shown here correspond to a pure version of the visitor pattern.

2.2 Demand-Driven Programming

In “Why functional programming matters” [23], Hughes motivates the utility
of practical functional programming through its excellence in compositionality.
When designing programs, one of the goals is to decompose a large problem into
several manageable sub-problems, solve each sub-problem in isolation, and then
compose the individual parts together into a complete solution. Unfortunately,
Hughes identifies some examples of programs which resist this kind of approach.

In particular, numeric algorithms—for computing square roots, derivatives
integrals—rely on an infinite sequence of approximations which converge on the
true answer only in the limit of the sequence. For these numeric algorithms, the
decision on when a particular approximation in the sequence is “close enough”
to the real answer lies solely in the eyes of the beholder: only the observer of
the answer can say when to stop improving the approximation. As such, stan-
dard imperative implementations of these numeric algorithms are expressed as a
single, complex loop, which interleaves both the concerns of producing better ap-
proximations with the termination decision on when to stop. Even more complex
is the branching structure of the classic minimax algorithm from artificial intel-
ligence for searching for reasonable moves in two-player games like chess, which
can have an unreasonably large (if not infinite) search space. Here, too, there
is difficulty separating generation from selection, and worse there is the inter-
mediate step of pruning out uninteresting sub-trees of the search space (known
as alpha-beta pruning). As a result, a standard imperative implementation of



minimax is a single, recursive function that combines all the tasks—generation,
pruning, estimation, and selection—at once.

Hughes shows how both instances of failed decomposition can be addressed
in functional languages through the technique of demand-driven programming.
In each case, the main obstacle is that the control of how to drive the next
step of the algorithm—whether to continue or not—lies with the consumer. The
producer of potential approximations and game states, in contrast, should only
take over when demanded by the consumer. By giving primary control to the
consumer, each of these problems can be decomposed into sensible sub-tasks, and
recomposed back together. Hughes uses lazy evaluation, as found in languages
like Miranda and Haskell, in order to implement the demand-driven algorithms.
However, the downside of relying on lazy evaluation is that it is a whole-language
decision: a language is either lazy by default, like Haskell, or not, like OCaml.
When working in a strict language, expressing these demand-driven algorithms
with manual laziness loses much of their original elegance [34].

In contrast, a language should directly support the capability of yielding
control to the consumer independently of the language being strict or lazy; anal-
ogously to what happens with lambda abstractions. An abstraction computes
on-demand, why is this property relegated to this predefined type only? In fact,
the concept of codata also has this property. As such, it allows us to describe
demand-driven programs in an agnostic way which works just as well in Haskell
as in OCaml without any additional modification. For example, we can imple-
ment Hughes’ demand-driven AI game in terms of codata instead of laziness. To
represent the current game state, and all of its potential developments, we can
use an arbitrarily-branching tree codata type.

codata Tree a where

Node : Tree a → a

Children : Tree a → List (Tree a)

The task of generating all potential future boards from the current board
state produces one of these tree objects, described as follows (where moves of
type Board → List Board generates a list of possible moves):

gameTree : Board → Tree Board

(gameTree b).Node = b

(gameTree b). Children = map gameTree (moves b)

Notice that the tree might be finite, such as in the game of Tic-Tac-Toe. However,
it would still be inappropriate to waste resources fully generating all moves
before determining which are even worth considering. Fortunately, the fact that
the responses of a codata object are only computed when demanded means that
the consumer is in full control over how much of the tree is generated, just as in
Hughes’ algorithm. This fact lets us write the following simplistic prune function
which cuts off sub-trees at a fixed depth.

prune : Int → Tree Board → Tree Board

(prune x t).Node = t.Node

(prune 0 t). Children = []

(prune x t). Children = map (prune(x-1)) t.Children



The more complex alpha-beta pruning algorithm can be written as its own pass,
similar to prune above. Just like Hughes’ original presentation, the evaluation
of the best move for the opponent is the composition of a few smaller functions:

eval = maximize . maptree score . prune 5 . gameTree

What is the difference between this codata version of minimax and the one
presented by Hughes that makes use of laziness? They both compute on-demand
which makes the game efficient. However, demand-driven code written with co-
data can be easily ported between strict and lazy languages with only syntactic
changes. In other words, codata is a general, portable, programming feature
which is the key for compositionality in program design.3

2.3 Abstraction Mechanism

In the pursuit of scalable and maintainable program design, the typical followup
to composability is abstraction. The basic purpose of abstraction is to hide cer-
tain implementation details so that different parts of the code base need not be
concerned with them. For example, a large program will usually be organized into
several different parts or “modules,” some of which may hold general-purpose
“library” code and others may be application-specific “clients” of those libraries.
Successful abstractions will leverage tools of the programming language in ques-
tion so that there is a clear interface between libraries and their clients, codifying
which details are exposed to the client and which are kept hidden inside the li-
brary. A common such detail to hide is the concrete representation of some data
type, like strings and collections. Clear abstraction barriers give freedom to both
the library implementor (to change hidden details without disrupting any clients)
as well as the client (to ignore details not exposed by the interface).

Reynolds [36] identified, and Cook [12] later elaborated on, two different
mechanisms to achieve this abstraction: abstract data types and procedural ab-
straction. Abstract data types are crisply expressed by the Standard ML module
system, based on existential types, which serves as a concrete practical touch-
stone for the notion. Procedural abstraction is pervasively used in object-oriented
languages. However, due to the inherent differences among the many languages
and the way they express procedural abstraction, it may not be completely clear
of what the “essence” is, the way existential types are the essence of modules.
What is the language-agnostic representation of procedural abstraction? Codata!
The combination of observation-based interfaces, message-passing, and dynamic
dispatch are exactly the tools needed for procedural abstraction. Other common
object-oriented features—like inheritance, subtyping, encapsulation, and muta-
ble state—are orthogonal to this particular abstraction goal. While they may
be useful extensions to codata for accomplishing programming tasks, only pure
codata itself is needed to represent abstraction.

3 To see the full code for all the examples of [24] implemented in terms of codata, visit
https://github.com/zachsully/codata examples.



Specifying a codata type is giving an interface—between an implementation
and a client—so that instances of the type (implementations) can respond to
requests (clients). In fact, method calls are the only way to interact with our
objects. As usual, there is no way to “open up” a higher-order function—one
example of a codata type—and inspect the way it was implemented. The same
intuition applies to all other codata types. For example, Cook’s [12] procedural
“set” interface can be expressed as a codata type with the following observations:

codata Set where

IsEmpty : Set → Bool

Contains : Set → Int → Bool

Insert : Set → Int → Set

Union : Set → Set → Set

Every single object of type Set will respond to these observations, which is
the only way to interact with it. This abstraction barrier gives us the freedom of
defining several different instances of Set objects that can all be freely composed
with one another. One such instance of Set uses a list to keep track of a hidden
state of the contained elements (where elemOf : List Int → Int → Bool
checks if a particular number is an element of the given list, and the operation
fold : (a → b → b) → b → List a → b is the standard functional fold):

finiteSet : List Int → Set

(finiteSet xs). IsEmpty = xs == []

(finiteSet xs). Contains y = elemOf xs y

(finiteSet xs). Insert y = finiteSet (y:xs)

(finiteSet xs).Union s = fold (λx t → t.Insert x) s xs

emptySet = finiteSet []

But of course, many other instances of Set can also be given. For example,
this codata type interface also makes it possible to represent infinite sets like
the set evens of all even numbers which is defined in terms of the more gen-
eral evensUnion that unions all even numbers with some other set (where the
function isEven : Int → Int checks if a number is even):

evens = evensUnion emptySet

evensUnion : Set → Set

(evensUnion s). IsEmpty = False

(evensUnion s). Contains y = isEven y || s.Contains y

(evensUnion s). Insert y = evensUnion (s.Insert y)

(evensUnion s). Union t = evensUnion (s.Union t)

Because of the natural abstraction mechanism provided by codata, different Set
implementations can interact with each other. For example, we can union a
finite set and evens together because both definitions of Union know nothing
of the internal structure of the other Set. Therefore, all we can do is apply the
observations provided by the Set codata type.

While sets of numbers are fairly simplistic, there are many more practical
real-world instances of the procedural abstraction provided by codata to be
found in object-oriented languages. For example, databases are a good use of



abstraction, where basic database queries can be represented as the observations
on table objects. A simplified interface to a database table (containing rows of
type a) with selection, deletion, and insertion, is given as follows:

codata Database a where

Select : Database a → (a → Bool) → List a

Delete : Database a → (a → Bool) → Database a

Insert : Database a → a → Database a

On one hand, specific implementations can be given for connecting to and
communicating with a variety of different databases—like Postgres, MySQL, or
just a simple file system—which are hidden behind this interface. On the other
hand, clients can write generic operations independently of any specific database,
such as copying rows from one table to another or inserting a row into a list of
compatible tables:

copy : Database a → Database a → Database a

copy from to = let rows = from.Select(λ_ → True)

in foldr (λrow db → db.Insert row) to rows

insertAll : List (Database a) → a → List (Database a)

insertAll dbs row = map (λdb → db.Insert row) dbs

In addition to abstracting away the details of specific databases, both copy and
insertAll can communicate between completely different databases by just
passing in the appropriate object instances, which all have the same generic
type. Another use of this generality is for testing. Besides the normal instances
of Database a which perform permanent operations on actual tables, one can
also implement a fictitious simulation which records changes only in temporary
memory. That way, client code can be seamlessly tested by running and checking
the results of simulated database operations that have no external side effects
by just passing pure codata objects.

2.4 Representing Pre- and Post-Conditions

The extension of data types with indexes (a.k.a. generalized algebraic data types)
has proven useful to statically verify a data structure’s invariant, like for red-
black trees [44]. With indexed data types, the programmer can inform the static
type system that a particular value of a data type satisfies some additional
conditions by constraining the way in which it was constructed. Unsurprisingly,
indexed codata types are dual and allow the creator of an object to constrain
the way it is going to be used, thereby adding pre- and post-conditions to the
observations of the object. In other words, in a language with type indexes,
codata enables the programmer to express more information in its interface.

This additional expressiveness simplifies applications that rely on a type in-
dex to guard observations. Thibodeau et al. [41] give examples of such programs,
including an automaton specification where its transitions correspond to an ob-
servation that changes a pre- and post-condition in its index, and a fair resource
scheduler where the observation of several resources is controlled by an index
tracking the number of times they have been accessed. For concreteness, let’s



use an indexed codata type to specify safe protocols as in the following example
from an object-oriented language with guarded methods:

index Raw , Bound , Live

codata Socket i where

Bind : Socket Raw → String → Socket Bound

Connect : Socket Bound → Socket Live

Send : Socket Live → String → ()

Receive : Socket Live → String

Close : Socket Live → ()

This example comes from DeLine and Fähndrich [14], where they present an
extension to C] constraining the pre- and post-conditions for method calls. If
we have an instance of this Socket i interface, then observing it through the
above methods can return new socket objects with a different index. The index
thereby governs the order in which clients are allowed to apply these methods.
A socket will start with the index Raw. The only way to use a Socket Raw is to
Bind it, and the only way to use a Socket Bound is to Connect it. This forces
us to follow a protocol when initializing a Socket.

Intermezzo 1 This declaration puts one aspect in the hands of the program-
mer, though. A client can open a socket and never close it, hogging the resource.
We can remedy this problem with linear types, which force us to address any
loose ends before finishing the program. With linear types, it would be a type
error to have a lingering Live socket laying around at the end of the program,
and a call to Close would use it up. Furthermore, linear types would ensure
that outdated copies of Socket objects cannot be used again, which is especially
appropriate for actions like Bind which is meant to transform a Raw socket into
a Bound one, and likewise for Connect which transforms a Bound socket into
a Live one. Even better, enhancing linear types with a more sophisticated no-
tion of ownership—like in the Rust programming language which differentiates
a permanent transfer of ownership from temporarily borrowing it—makes this
resource-sensitive interface especially pleasant. Observations like Bind, Connect,
and Close which are meant to fully consume the observed object would involve
full ownership of the object itself to the method call and effectively replace the
old object with the returned one. In contrast, observations like Send and Receive

which are meant to be repeated on the same object would merely borrow the
object for the duration of the action so that it could be used again.

3 Inter-compilation of Core Calculi

We saw previously examples of using codata types to replicate well-known en-
codings of data types into the λ-calculus. Now, let’s dive in and show how data
and codata types formally relate to one another. In order to demonstrate the
relationship, we will consider two small languages that extend the common poly-
morphic λ-calculus: λdata extends λ with user-defined algebraic data types, and



λcodata extends λ with user-defined codata types. In the end, we will find that
both of these foundational languages can be inter-compiled into one another.
Data can be represented by codata via the visitor pattern (V). Codata can be
represented by data by tabulating the possible answers of objects (T).

λdata λcodata

Visitor (V)

Tabulate (T)

In essence, this demonstrates how to compile programs between the functional
and object-oriented paradigms. The T direction shows how to extend existing
functional languages (like OCaml, Haskell, or Racket) with codata objects with-
out changing their underlying representation. Dually, the V direction shows how
to compile functional programs with data types into an object-oriented target
language (like JavaScript).

Each of the encodings are macro expansions, in the sense that they leave the
underlying base λ-calculus constructs of functions, applications, and variables
unchanged (as opposed to, for example, continuation-passing style translations).
They are defined to operate on untyped terms, but they also preserve typabil-
ity when given well-typed terms. The näıve encodings preserve the operational
semantics of the original term, according to a call-by-name semantics. We also
illustrate how the encodings can be modified slightly to correctly simulate the
call-by-value operational semantics of the source program. To conclude, we show
how the languages and encodings can be generalized to more expressive type
systems, which include features like existential types and indexed types (a.k.a.
generalized algebraic data types and guarded methods).

Notation We use both an overline t and dots t1 . . . to indicate a sequence of
terms t (and likewise for types, variables, etc.). The arrow type τ → T means
τ1 → · · · → τn → T; when n is 0, it is not a function type, i.e. just the codomain
T. The application K t means (((K t1) . . . ) tn); when n is 0, it is not a func-
tion application, but the constant K. We write a single step of an operational
semantics with the arrow 7→, and many steps (i.e. its reflexive-transitive closure)
as 7→→. Operational steps may occur within an evaluation context E, i.e. t 7→ t′

implies that E[t] 7→ E[t′].

3.1 Syntax and Semantics

We present the syntax and semantics of the base language and the two extensions
λdata and λcodata. For the sake of simplicity, we keep the languages as minimal
as possible to illustrate the main inter-compilations. Therefore, λdata and λcodata

do not contain recursion, nested (co)patterns, or indexed types. The extension
with recursion is standard, and an explanation of compiling (co)patterns can be
found in [40, 39, 11]. Indexed types are later discussed informally in Section 3.6.



Syntax:
Type 3 τ, ρ ::= a | τ → ρ | ∀a. τ
Term 3 t, u, e ::= x | t u | λx. e

Operational Semantics:

Call-by-name

V ::= x | λx. e E ::= � | E u

(λx. e) u 7→ e[u/x]

Call-by-value

V ::= x | λx. e E ::= � | E u | V E

(λx. e) V 7→ e[V/x]

Type System (where S = t for call-by-name and S = V for call-by-value):

x : τ ∈ Γ
Γ ` x : τ

Γ ` t : τ → ρ Γ ` u : τ

Γ ` t u : ρ

Γ, x : τ ` e : ρ

Γ ` λx. e : τ → ρ

Γ, a ` S : τ

Γ ` S : ∀a. τ
Γ ` t : ∀a.τ Γ ` ρ

Γ ` t : τ [ρ/a]

Fig. 1: Polymorphic λ-calculus: The base language

The Base Language We will base both our core languages of interest on
a common starting point: the polymorphic λ-calculus as shown in Figure 1.4

This is the standard simply typed λ-calculus extended with impredicative poly-
morphism (a.k.a. generics). There are only three forms of terms (variables x,
applications t u, and function abstractions λx.e) and three forms of types (type
variables a, function types τ → ρ, and polymorphic types ∀a.τ). We keep the
type abstraction and instantiation implicit in programs—as opposed to explicit
as in System F—for two reasons. First, this more accurately resembles the func-
tional languages in which types are inferred, as opposed to mandatory annota-
tions explicit within the syntax of programs. Second, it more clearly shows how
the translations that follow do not rely on first knowing the type of terms, but
apply to any untyped term. In other words, the compilation techniques are also
appropriate for dynamically typed languages like Scheme and Racket.

Figure 1 reviews both the standard call-by-name and call-by-value opera-
tional semantics for the λ-calculus. As usual, the difference between the two is
that in call-by-value, the argument of a function call is evaluated prior to substi-
tution, whereas in call-by-name the argument is substituted first. This is implied
by the different set of evaluation contexts (E) and the fact that the operational
rule uses a more restricted notion of value (V ) for substitutable arguments in
call-by-value. Note that, there is an interplay between evaluation and typing. In
a more general setting where effects are allowed, the typing rule for introducing
polymorphism (i.e. the rule with S : ∀a.τ in the conclusion) is only safe for
substitutable terms, which imposes the well-known the value restriction for call-
by-value (limiting S to values), but requires no such restriction in call-by-name
where every term is a substitutable value (letting S be any term).

4 The judgement Γ ` ρ should be read as: all free type variables in ρ occur in Γ . As
usual Γ, a means that a does not occur free in Γ .



Syntax:

Declaration 3 d ::= data T a where K : τ → T a . . .
Type 3 τ, ρ ::= a | τ → ρ | ∀a. τ | T ρ

Term 3 t, u, e ::= x | t u | λx. e | K t | case t {K x→ t}

Operational Semantics:

Call-by-name

V ::= · · · | K t

E ::= · · · | case E {K x→ e}

case (K t) {K x→ e, . . .} 7→ e[t/x]

Call-by-value

V ::= · · · | K V

E ::= · · · | case E {K x→ e} | K V E t

case (K V ) {K x→ e, . . .} 7→ e[V/x]

Type System:

K : ∀a. τ1 → · · · → T a ∈ Γ Γ ` t1 : τ1[ρ/a] . . .

Γ ` K t1 · · · : T ρ

Γ ` t : T ρ K1 : ∀a. τ1 → T a ∈ Γ Γ, x1 : τ1[ρ/a] ` e1 : τ ′ . . .

Γ ` case t {K1 x1 → e1, . . .} : τ ′

Fig. 2: λdata: Extending polymorphic λ-calculus with data types

A Language with Data The first extension of the λ-calculus is with user-
defined data types, as shown in Figure 2; it corresponds to a standard core
language for statically typed functional languages. Data declarations introduce
a new type constructor (T) as well as some number of associated constructors
(K) that build values of that data type. For simplicity, the list of branches in
a case expression are considered unordered and non-overlapping (i.e. no two
branches for the same constructor within a single case expression). The types
of constructors are given alongside free variables in Γ , and the typing rule for
constructors requires they be fully applied. We also assume an additional side
condition to the typing rule for case expressions that the branches are exhaustive
(i.e. every constructor of the data type in question is covered as a premise).

Figure 2 presents the extension to the operational semantics from Figure 1,
which is also standard. The new evaluation rule for data types reduces a case ex-
pression matched with an applied constructor. Note that since the branches are
unordered, the one matching the constructor is chosen out of the possibilities and
the parameters of the constructor are substituted in the branch’s pattern. There
is also an additional form of constructed values: in call-by-name any constructor
application is a value, whereas in call-by-value only constructors parameterized
by other values is a value. As such, call-by-value goes on to evaluate construc-
tor parameters in advance, as shown by the extra evaluation context. In both
evaluation strategies, there is a new form of evaluation context that points out
the discriminant of a case expression, since it is mandatory to determine which
constructor was used before deciding the appropriate branch to take.



Syntax:
Declaration 3 d ::= codata U a where H : U a→ τ . . .
Type 3 τ, ρ ::= a | τ → ρ | ∀a. τ | U ρ

Term 3 t, u, e ::= x | t u | λx. e | t.H | {H→ e}
Operational Semantics:

Call-by-name

V ::= · · · | {H→ e} E ::= · · · | E.H

{H→ e, . . .}.H 7→ e

Call-by-value

V ::= · · · | {H→ e} E ::= · · · | E.H

{H→ e, . . .}.H 7→ e

Type System:

H : ∀a.U a→ τ ∈ Γ Γ ` t : U ρ

Γ ` t.H : τ [ρ/a]

Γ ` H1 : U ρ→ τ1 Γ ` e1 : τ1 . . .

Γ ` {H1 → e1, . . .} : U ρ

Fig. 3: λcodata: Extending polymorphic λ-calculus with codata types

A Language with Codata The second extension of the λ-calculus is with user-
defined codata types, as shown in Figure 3. Codata declarations in λcodata define
a new type constructor (U) along with some number of associated destructors
(H) for projecting responses out of values of a codata type. The type level of
λcodata corresponds directly to λdata. However, at the term level, we have codata
observations of the form t.H using “dot notation”, which can be thought of as
sending the message H to the object t or as a method invocation from object-
oriented languages. Values of codata types are introduced in the form {H1 →
e1, . . . ,Hn → en}, which lists each response this value gives to all the possible
destructors of the type. As with case expressions, we take the branches to be
unordered and non-overlapping for simplicity.

Interestingly, the extension of the operational semantics with codata—the
values, evaluation contexts, and reduction rules—are identical for both call-by-
name and call-by-value evaluation. In either evaluation strategy, a codata object
{H→ e, . . .} is considered a value and the codata observation t.H must evaluate
t no matter what to continue, leading to the same form of evaluation context
E.H. The additional evaluation rule selects and invokes the matching branch of
a codata object and is the same regardless of the evaluation strategy.

Note that the reason that values of codata types are the same in any eval-
uation strategy is due to the fact that the branches of the object are only ever
evaluated on-demand, i.e. when they are observed by a destructor, similar to
the fact that the body of a function is only ever evaluated when the function is
called. This is the semantic difference that separates codata types from records
found in many programming languages. Records typically map a collection of
labels to a collection of values, which are evaluated in advance in a call-by-value
language similar to the constructed values of data types. Whereas with codata
objects, labels map to behavior which is only invoked when observed.



V



data T a where

K1 : τ1 → T a
...

Kn : τn → T a


 =

codata Tvisit a b where
K1 : Tvisit a b→ τ1 → b

...
Kn : Tvisit a b→ τn → b

codata T a where
CaseT : T a→ ∀b.Tvisit a b→ b

V[[Ki t]] = {CaseT → λv. (v.Ki) V[[t]]}
V[[case t {K1 x1 → e1, . . .}]] = (V[[t]].CaseT) {K1 → λx1.V[[e1]], . . .}

Fig. 4: V : λdata → λcodata mapping data to codata via the visitor pattern

The additional typing rules for λcodata are also given in Figure 3. The rule for
typing t.H is analogous to a combination of type instantiation and application,
when viewing H as a function of the given type. The rule for typing a codata
object, in contrast, is similar to the rule for typing a case expression of a data
type. However, in this comparison, the rule for objects is partially “upside down”
in the sense that the primary type in question (U ρ) appears in the conclusion
rather than as a premise. This is the reason why there is one less premise for
typing codata objects than there is for typing data case expressions. As with
that rule, we assume that the branches are exhaustive, so that every destructor
of the codata type appears in the premise.

3.2 Compiling Data to Codata: The Visitor Pattern

In Section 2.1, we illustrated how to convert a data type representing trees into
a codata type. This encoding corresponds to a rephrasing of the object-oriented
visitor pattern to avoid unnecessary side-effects. Now lets look more generally
at the pattern, to see how any algebraic data type in λdata can be encoded in
terms of codata in λcodata.

The visitor pattern has the net effect of inverting the orientation of a data
declaration (wherein construction comes first) into codata declarations (wherein
destruction comes first). This reorientation can be used for compiling user-
defined data types in λdata to codata types in λcodata as shown in Figure 4.
As with all of the translations we will consider, this is a macro expansion since
the syntactic forms from the base λ-calculus are treated homomorphically (i.e.
V[[λx. e]] = λx.V[[e]], V[[t u]] = V[[t]] V[[u]], and V[[x]] = x). Furthermore, this
translation also perfectly preserves types, since the types of terms are exactly
the same after translation (i.e. V[[τ ]] = τ).

Notice how each data type (T a) gets represented by two codata types: the
“visitor” (Tvisit a b) which says what to do with values made with each construc-
tor, and the type itself (T a) which has one method which accepts a visitor and
returns a value of type b. An object of the codata type, then, must be capable of
accepting any visitor, no matter what type of result it returns. Also notice that
we include no other methods in the codata type representation of T a.



At the level of terms, first consider how the case expression of the data type
is encoded. The branches of the case (contained within the curly braces) are
represented as a first-class object of the visitor type: each constructor is mapped
to the corresponding destructor of the same name and the variables bound in
the pattern are mapped to parameters of the function returned by the object
in each case. The whole case expression itself is then implemented by calling
the sole method (CaseT) of the codata object and passing the branches of the
case as the corresponding visitor object. Shifting focus to the constructors, we
can now see that they are compiled as objects that invoke the corresponding
destructor on any given visitor, and the terms which were parameters to the
constructor are now parameters to a given visitor’s destructor. Of course, other
uses of the visitor pattern might involve a codata type (T) with more methods
implementing additional functionality besides case analysis. However, we only
need the one method to represent data types in λdata because case expressions
are the primitive destructor for values of data types in the language.

For example, consider applying the above visitor pattern to a binary tree
data type as follows:

V

data Tree where
Leaf : Int→ Tree
Branch : Tree→ Tree→ Tree

 =

codata Treevisit b where
Leaf : Int→ b
Branch : Tree→ Tree→ b

codata Tree where
CaseTree : Tree→ ∀b.Treevisit b→ b

V[[Leaf n]] = {CaseTree → λv. v.Leaf n}
V[[Branch l r]] = {CaseTree → λv. v.Branch l r}

V

[[
case t

{
Leaf n → el

Branch l r → eb

}]]
= V[[t]].CaseTree

{
Leaf → λn.V[[el]]

Branch → λl. λr.V[[eb]]

}
Note how this encoding differs from the one that was given in Section 2.1 since
the CaseTree method is non-recursive whereas the WalkTree method was recursive,
in order to model a depth-first search traversal of the tree.

Of course, other operations, like the walk function, could be written in terms
of case expressions and recursion as usual by an encoding with above method
calls. However, it is possible to go one step further and include other primitive
destructors—like recursors or iterators in the style of Gödel’s system T—by
embedding them as other methods of the encoded codata type. For example, we
can represent walk as a primitive destructor as it was in Section 2.1 in addition
to non-recursive case analysis by adding an alternative visitor Treewalk and one
more destructor to the generated Tree codata type like so:

codata Treewalk b where
Leaf : Int→ b
Branch : b→ b→ b

codata Tree where
CaseTree : Tree→ ∀b.Treevisit b→ b
WalkTree : Tree→ ∀b.Treewalk b→ b

V[[Leaf n]] =

{
CaseTree → λv. v.Leaf n
WalkTree → λw.w.Leaf n

}
V[[Branch l r]] =

{
CaseTree → λv. v.Branch l r
WalkTree → λw.w.Branch (l.WalkTree) (r.WalkTree)

}



For codata types with n destructors, where n ≥ 1:

T



codata U a where

H1 : U a→ τ1
...

Hn : U a→ τn


 =

data U a where
TableU : τ1 → · · · → τn → U a

T[[t.Hi]] = case T[[t]] {TableU y1 . . . yn → yi}
T[[{H1 → e1, . . . ,Hn → en}]] = TableU T[[e1]] . . .T[[en]]

For codata types with 0 destructors (where Unit is the same for every such U):

T

[[
codata U a where

--no destructors

]]
=

data Unit where
unit : Unit

T[[{}]] = unit

Fig. 5: T : λcodata → λdata tabulating codata responses with data tuples

where the definition of Treevisit and the encoding of case expressions is the same.
In other words, this compilation technique can generalize to as many primitive
observations and recursion schemes as desired.

3.3 Compiling Codata to Data: Tabulation

Having seen how to compile data to codata, how can we go the other way? The
reverse compilation would be useful for extending functional languages with
user-defined codata types, since many functional languages are compiled to a
core representation based on the λ-calculus with data types.

Intuitively, the declared data types in λdata can be thought of as “sums of
products.” In contrast, the declared codata types in λcodata can be thought of as
“products of functions.” Since both core languages are based on the λ-calculus,
which has higher-order functions, the main challenge is to relate the two notions
of “products.” The codata sense of products are based on projections out of
abstract objects, where the different parts are viewed individually and only when
demanded. The data sense of products, instead, are based on tuples, in which
all components are laid out in advance in a single concrete structure.

One way to convert codata to data is to tabulate an object’s potential answers
ahead of time into a data structure. This is analogous to the fact that a function
of type Bool → String can be alternatively represented by a tuple of type
String * String, where the first and second components are the responses of
the original function to true and false, respectively. This idea can be applied
to λcodata in general as shown in the compilation in Figure 5.

A codata declaration of U becomes a data declaration with a single con-
structor (TableU) representing a tuple containing the response for each of the
original destructors of U. At the term level, a codata abstraction is compiled by
concretely tabulating each of its responses into a tuple using the TableU construc-



tor. A destructor application returns the specific component of the constructed
tuple which corresponds to that projection. Note that, since we assume that each
object is exhaustive, the tabulation transformation is relatively straightforward;
filling in “missing” method definitions with some error value that can be stored
in the tuple at the appropriate index would be done in advance as a separate
pre-processing step.

Also notice that there is a special case for non-observable “empty” codata
types, which are all collapsed into a single pre-designated Unit data type. The
reason for this collapse is to ensure that this compilation preserves typability: if
applied to a well-typed term, the result is also well-typed. The complication arises
from the fact that when faced with an empty object {}, we have no idea which
constructor to use without being given further typing information. So rather
than force type checking or annotation in advance for this one degenerate case,
we instead collapse them all into a single data type so that there is no need to
differentiate based on the type. In contrast, the translation of non-empty objects
is straightforward, since we can use the name of any one of the destructors to
determine the codata type it is associated with, which then informs us of the
correct constructor to use.

3.4 Correctness

For the inter-compilations between λcodata into λdata to be useful in practice,
they should preserve the semantics of programs. For now, we focus only on the
call-by-name semantics for each of the languages. With the static aspect of the
semantics, this means they should preserve the typing of terms.

Proposition 1 (Type Preservation). For each of the V and T translations:
if Γ ` t : τ then [[Γ ]] ` [[t]] : [[τ ]] (in the call-by-name type system).

Proof (Sketch). By induction on the typing derivation of Γ ` t : τ .

With the dynamic aspect of the semantics, the translations should preserve the
outcome of evaluation (either converging to some value, diverging into an infinite
loop, or getting stuck) for both typed and untyped terms. This works because
each translation preserves the reduction steps, values, and evaluation contexts
of the source calculus’ call-by-name operational semantics.

Proposition 2 (Evaluation Preservation). For each of the V and T trans-
lations: t 7→→ V if and only if [[t]] 7→→ [[V ]] (in the call-by-name semantics).

Proof (Sketch). The forward (“only if”) implication is a result of the following
facts that hold for each translation in the call-by-name semantics:

– For any redex t in the source, if t 7→ t′ then [[t]] 7→ t′′ 7→→ [[t′]].
– For any value V in the source, [[V ]] is a value.
– For any evaluation context E in the source, there is an evaluation context
E′ in the target such that [[E[t]]] = E′[[[t]]] for all t.

The reverse (“if”) implication then follows from the fact that the call-by-name
operational semantics of both source and target languages is deterministic.



3.5 Call-by-Value: Correcting the Evaluation Order

The presented inter-compilation techniques are correct for the call-by-name se-
mantics of the calculi. But what about the call-by-value semantics? It turns out
that the simple translations seen so far do not correctly preserve the call-by-value
semantics of programs, but they can be easily fixed by being more careful about
how they treat the values of the source and target calculi. In other words, we
need to make sure that values are translated to values, and evaluation contexts
to evaluation contexts. For instance, the following translation (up to renaming)
does not preserve the call-by-value semantics of the source program:

T[[{Fst→ error ,Snd→ True}]] = Pair error True

The object {Fst → error ,Snd → True} is a value in call-by-value, and the erro-
neous response to the Fst will only be evaluated when observed. However, the
structure Pair error True is not a value in call-by-value, because the field error
must be evaluated in advance which causes an error immediately. In the other
direction, we could also have

V[[Pair error True]] = {Case→ λv. v.Pair error True}

Here, the immediate error in Pair error True has become incorrectly delayed
inside the value {Case→ λv. v.Pair error True}.

The solution to this problem is straightforward: we must manually delay
computations that are lifted out of (object or λ) abstractions, and manually
force computations before their results are hidden underneath abstractions. For
the visitor pattern, the correction is to only introduce the codata object on
constructed values. We can handle other constructed terms by naming their
non-value components in the style of administrative-normalization like so:

V[[Ki V ]] = {CaseT → λv. v.Ki V }
V[[Ki V u t]] = let x = u in V[[Ki V x t]] if u is not a value

Conversely, the tabulating translation T will cause the on-demand observa-
tions of the object to be converted to preemptive components of a tuple struc-
ture. To counter this change in evaluation order, a thunking technique can be
employed as follows:

T[[t.Hi]] = case T[[t]] {TableU y1 . . . yn → force yi}
T[[{H1 → e1, . . . ,Hn → en}]] = TableU (delayT[[e1]]) . . . (delayT[[en]])

The two operations can be implemented as delay t = λz. t and force t = t unit
as usual, but can also be implemented as more efficient memoizing operations.
With all these corrections, Propositions 1 and 2 also hold for the call-by-value
type system and operational semantics.



3.6 Indexed Data and Codata Types: Type Equalities

In the world of types, we have so far only formally addressed inter-compilation
between languages with simple and polymorphic types. What about the compi-
lation of indexed data and codata types? It turns out some of the compilation
techniques we have discussed so far extend to type indexes without further effort,
whereas others need some extra help. In particular, the visitor-pattern-based
translation V can just be applied straightforwardly to indexed data types:

V



data T a where

K1 : τ1 → T ρ1
...

Kn : τn → T ρn


 =

codata Tvisit a b where
K1 : Tvisit ρ1 b→ τ1 → b

...
Kn : Tvisit ρn b→ τn → b

codata T a where
CaseT : T a→ ∀b.Tvisit a b→ b

In this case, the notion of an indexed visitor codata type exactly corresponds
to the mechanics of case expressions for GADTs. In contrast, the tabulation
translation T does not correctly capture the semantics of indexed codata types,
if applied näıvely.

Thankfully, there is a straightforward way of “simplifying” indexed data
types to more conventional data types using some built-in support for type equal-
ities. The idea is that a constructor with a more specific return type can be re-
placed with a conventional constructor that is parameterized by type equalities
that prove that the normal return type must be the more specific one. The same
idea can be applied to indexed codata types as well. A destructor that can only
act on a more specific instance of the codata type can instead be replaced by
one which works on any instance, but then immediately asks for proof that the
object’s type is the more specific one before completing the observation. These
two translations, of replacing type indexes with type equalities, are defined as:

Eq



data T a where

K1 : τ1 → T ρ1
...

Kn : τn → T ρn


 =

data T a where
K1 : a ≡ ρ1 → τ1 → T a

...
Kn : a ≡ ρn → τn → T a

Eq



codata U a where

H1 : U ρ1 → τ1
...

Hn : U ρn → τn


 =

codata U a where
H1 : U a→ a ≡ ρ1 → τ1

...
Hn : U a→ a ≡ ρn → τn

This formalizes the intuition that indexed data types can be thought of as en-
riching constructors to carry around additional constraints that were available
at their time of construction, whereas indexed codata types can be thought of as
guarding methods with additional constraints that must be satisfied before an
observation can be made. Two of the most basic examples of this simplification
are for the type declarations which capture the notion of type equality as an
indexed data or indexed codata type, which are defined and simplified like so:

Eq

[[
data Eq a b where

Refl : Eq a a

]]
=

data Eq a b where
Refl : a ≡ b→ Eq a b



Eq

[[
codata IfEq a b c where

AssumeEq : IfEq a a c→ c

]]
=

codata IfEq a b c where
AssumeEq : IfEq a b c→ a ≡ b→ c

With the above ability to simplify away type indexes, all of the presented com-
pilation techniques are easily generalized to indexed data and codata types by
composing them with Eq. For practical programming example, consider the fol-
lowing safe stack codata type indexed by its number of elements.

codata Stack a where
Pop : Stack (Succ a)→ (Z, Stack a)
Push : Stack a→ Z→ Stack (Succ a)

This stack type is safe in the sense that the Pop operation can only be applied to
non-empty Stacks. We cannot compile this to a data type via T directly, because
that translation does not apply to indexed codata types. However, if we first
simplify the Stack type via Eq, we learn that we can replace the type of the
Pop destructor with Pop : Stack a → ∀b.a ≡ Succ b → (Z,Stack b), whereas
the Push destructor is already simple, so it can be left alone. That way, for any
object s : Stack Zero, even though a client can initiate the observation s.Pop, it
will never be completed since there is no way to choose a b and prove that Zero
equals Succ b. Therefore, the net result of the combined T ◦Eq translation turns
Stack into the following data type, after some further simplification:

data Stack a where
MkS : (∀b.a ≡ Succ b→ (Z, Stack b))→ (Z→ Stack (Succ a))→ Stack a

Notice how the constructor of this type has two fields; one for Pop and one for
Push, respectively. However, the Pop operation is guarded by a proof obligation:
the client can only receive the top integer and remaining stack if he/she proves
that the original stack contains a non-zero number of elements.

4 Compilation in Practice

We have shown how data and codata are related through the use of two dif-
ferent core calculi. To explore how these ideas manifest in practice, we have
implemented codata in a couple of settings. First, we extended Haskell with
codata in order to compare the lazy and codata approaches to demand-driven
programming described in Section 2.2.5 Second, we have created a prototype
language with indexed (co)data types to further explore the interaction between
the compilation and target languages. The prototype language does not com-
mit to a particular evaluation strategy, typing discipline, or paradigm; instead
this decision is made when compiling a program to one of several backends.
The supported backends include functional ones—Haskell (call-by-need, static
types), OCaml (call-by-value, static types), and Racket (call-by-value, dynamic
types)—as well as the object-oriented JavaScript.6 The following issues of com-
plex copattern matching and sharing applies to both implementations; the per-
formance results on efficiency of memoized codata objects are tested with the
Haskell extension for the comparison with conventional Haskell code.

5 The GHC fork is at https://github.com/zachsully/ghc/tree/codata-macro.
6 The prototype compiler is at https://github.com/zachsully/dl/tree/esop2019.



n Time(s) codata Time(s) data Allocs(bytes) codata Allocs(bytes) data

10000 0.02 0.01 10,143,608 6,877,048
100000 0.39 0.27 495,593,464 463,025,832
1000000 19.64 18.54 44,430,524,144 44,104,487,488

Table 1: Fibonacci scaling tests for the GHC implementation

Complex Copattern Matching Our implementations support nested copat-
terns so that objects can respond to chains of multiple observations, even though
λcodata only provides flat copatterns. This extension does not enhance the lan-
guage expressivity but allows more succinct programs [2]. A flattening step is
needed to compile nested copatterns down to a core calculus, which has been ex-
plored in previous work by Setzer et al. [38] and Thibodeau [40] and implemented
in OCaml by Regis-Gianas and Laforgue [34]. Their flattening algorithm requires
copatterns to completely cover the object’s possible observations because the
coverage information is used to drive flattening. This approach was refined and
incorporated in a dependently typed setting by Cockx and Abel [11]. With our
goal of supporting codata independently of typing discipline and coverage analy-
sis, we have implemented the purely syntax driven approach to flattening found
in [39]. For example, the prune function from Section 2.2 expands to:

prune = λx → λt →
{ Node → t.Node ,

Children → case x of

0 → []

_ → map (prune(x-1)) t.Children }

Sharing If codata is to be used instead of laziness for demand-driven pro-
gramming, then it must have the same performance characteristics, which re-
lies on sharing the results of computations [6]. To test this, we compare the
performance of calculating streams of Fibonacci numbers—the poster child for
sharing—implemented with both lazy list data types and a stream codata type
in Haskell extended with codata. These tests, presented in Table 1, show the
speed of the codata version is always slower in terms of run time and alloca-
tions than the lazy list version, but the difference is small and the two versions
scale at the same rate. These performance tests are evidence that codata shares
the same information when compiled to a call-by-need language; this we get for
free because call-by-need data constructors—which codata is compiled into via
T—memoize their fields. In an eager setting, it is enough to use memoized ver-
sions of delay and force, which are introduced by the call-by-value compilation
described in Section 3.5. This sharing is confirmed by the OCaml and Racket
backends of the prototype language which find the 100th Fibonacci in less than
a second (a task that takes hours without sharing).

As the object-oriented representative, the JavaScript backend is a compi-
lation from data to codata using the visitor pattern presented in Section 3.2.
Because codata remains codata (i.e. JavaScript objects), an optimization must
be performed to ensure the same amount of sharing of codata as the other back-



Syntax
Values 3 V ::= · · · | {H→ V }
Terms 3 t, u, e ::= · · · | t.H | {H→ V } | letneed x = t in e

Transformation
A[[t.H]] = A[[t]].H

A[[{H→ t}]] = letneed x = A[[t]] in {H→ x}

Fig. 6: Memoization of λcodata

ends. The solution is to lift out the branches of a codata object, as shown in
Figure 6, where the call-by-need let-bindings can be implemented by delay and
force in strict languages as usual. It turns out that this transformation is also
needed in an alternative compilation technique presented by Regis-Gianas and
Laforgue [34] where codata is compiled to functions, i.e. another form of codata.

5 Related Work

Our work follows in spirit of Amin et al.’s [3] desire to provide a minimal theory
that can model type parameterization, modules, objects and classes. Another
approach to combine type parameterization and modules is also offered by 1ML
[37], which is mapped to System F. Amin et al.’s work goes one step further by
translating System F to a calculus that directly supports objects and classes.
Our approach differs in methodology: instead of searching for a logical foun-
dation of a pre-determined notion of objects, we let the logic guide us while
exploring what objects are. Even though there is no unanimous consensus that
functional and object-oriented paradigms should be combined, there have been
several hybrid languages for combining both styles of programming, including
Scala, the Common Lisp Object System [8], Objective ML [35], and a proposed
but unimplemented object system for Haskell [31].

Arising out of the correspondence between programming languages, category
theory, and universal algebras, Hagino [20] first proposed codata as an extension
to ML to remedy the asymmetry created by data types. In the same way that
data types represent initial F-algebras, codata types represent final F-coalgebras.
These structures were implemented in the categorical programming language
Charity [10]. On the logical side of the correspondence, codata arises naturally
in the sequent calculus [46, 29, 15] since it provides the right setting to talk about
construction of either the provider (i.e. the term) or the client (i.e. the context)
side of a computation, and has roots in classical [13, 42] and linear logic [18, 19].

In session-typed languages, which also have a foundation in linear logic, ex-
ternal choice can be seen as a codata (product) type dual to the way internal
choice corresponds to a data (sum) type. It is interesting that similar problems
arise in both settings. Balzer and Pfenning [7] discuss an issue that shows up
in choosing between internal and external choice; this corresponds to choosing
between data and codata, known as the expression problem. They [7] also sug-
gest using the visitor pattern to remedy having external choice (codata) without



internal choice (data) as we do in Section 3.2. Of course, session types go beyond
codata by adding a notion of temporality (via linearity) and multiple processes
that communicate over channels.

To explore programming with coinductive types, Ancona and Zucca [4] and
Jeannin et al. [26] extended Java and OCaml with regular cyclic structures;
these have a finite representation that can be eagerly evaluated and fully stored
in memory. A less restricted method of programming these structures was intro-
duced by Abel et al. [1, 2] who popularized the idea of programming by observa-
tions, i.e. using copatterns. This line of work further developed the functionality
of codata types in dependently typed languages by adding indexed codata types
[41] and dependent copattern matching [11], which enabled the specification of
bisimulation proofs and encodings of productive infinite objects in Agda. We
build on these foundations by developing codata in practical languages.

Focusing on implementation, Regis-Gianas and Laforgue [34] added codata
with a macro transformation in OCaml. As it turns out, this macro definition cor-
responds to one of the popular encodings of objects in the λ-calculus [27], where
codata/objects are compiled to functions from tagged messages to method bod-
ies. This compilation scheme requires the use of GADTs for static type checking,
and is therefore only applicable to dynamically typed languages or the few stati-
cally typed languages with expressive enough type systems like Haskell, OCaml,
and dependently typed languages. Another popular technique for encoding co-
data/objects is presented in [32], corresponding to a class-based organization
of dynamic dispatch [21], and is presented in this paper. This technique com-
piles codata/objects to products of methods, which has the advantage of being
applicable in a simply-typed setting.

6 Conclusion

We have shown here how codata can be put to use to capture several practical
programming idioms and applications, besides just modeling infinite structures.
In order to help incorporate codata in today’s programming languages, we have
shown how to compile between two core languages: one based on the familiar
notion of data types from functional languages such as Haskell and OCaml,
and the other one, based on the notion of a structure defined by reactions to
observations [1]. This paper works toward the goal of providing common ground
between the functional and object-oriented paradigms; as future work, we would
like to extend the core with other features of full-fledged functional and object-
oriented languages. A better understanding of codata clarifies both the theory
and practice of programming languages. Indeed, this work is guiding us in the
use of fully-extensional functions for the compilation of Haskell programs. The
design is motivated by the desire to improve optimizations, in particular the
ones relying on the “arity” of functions, to be more compositional and work
between higher-order abstractions. It is interesting that the deepening of our
understanding of objects is helping us in better compiling functional languages!
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A Statically Checked Finalization with Regions

Intermezzo 1 discusses how linear types can be used to statically enforce even
more of the socket protocol by ensuring that stale socket references are consumed
after binding, connecting, and closing, and that every socket is closed by the time
it goes out of scope. While linear types are necessary for preventing references
to stale socket states, there is an alternative technique besides linearity which
ensures that sockets must be closed by the end of a client transaction, after which
the socket is no longer usable. The idea is to use an extra layer of indirection
similar to Haskell’s ST monad [28].

codata Socket s i where

Bind : Socket s Raw → String → SK s (Socket s Bound)

Connect : Socket s Bound → SK s (Socket s Live)

Send : Socket s Live → String → SK s ()

Receive : Socket s Live → SK s String

Close : Socket s Live → SK s s

codata Transaction r where

Run : Transaction r → forall s. Socket s Raw → SK s (s, r)

runTransaction : Transaction r → r

First, each of the Socket methods are tagged with an additional region param-
eter (s) and return their result within an abstract monad SK s of socket actions
which prevents socket actions from being run directly outside of a transaction.
Second, a socket Transaction starts with a Raw socket in some region and yields
a result r along with the region s which signifies that the socket has been closed.
Finally, the function runTransaction generates a fresh Raw socket to run the
Transaction and the associated SK action, discards the final closure token s,
and returns the result r. By having a computation return the correct region (s)
along with the result, we guarantee that the Transaction must have closed the
socket before exiting. These kinds of protocol-like applications are a natural fit
with indexed codata types. All of the behavior of the protocol itself, and the
restricted handling of sensitive resources, is expressed in the types, so that the
type system can check that the methods are applied correctly.

B Decomposing λ-encodings

Here, we show formally how a small modification of the visitor pattern gives
rise to a decomposition of the Church (or Böhm-Berarducci, when types are
taken into account) encodings of data. The key point is that by currying the
visitor pattern, we only need to use objects with a single method (denoted by
the sub-language λcodata1 where each codata type can only have one destructor),
so that the individual identity of codata types can be easily anonymized as just



C



data T a where

K1 : τ1 → T a
...

Kn : τn → T a


 =

codata T a where
CaseT : T a→ ∀b. (τ1 → b)

→ . . .
→ (τn → b)
→ b

C[[Ki t]] = {CaseT → λy1 . . . λyn. yi C[[t]]}
C[[case t {K1 x1 → e1, . . .}]] = C[[t]].CaseT (λx1.C[[e1]]) . . .

Fig. 7: C : λdata → λcodata1 mapping data to codata with a single destructor

higher-order functions.

λdata λcodata1

λ

Curried Visitor (C)

Church/B.-B. (Λ) Anonymize (A)

In addition to relating the visitor pattern to data and codata, Section 2.1
also argued that common encodings of data types into the (typed or untyped) λ-
calculus is decomposed by first encoding data into codata, and then anonymizing
that codata type’s identity. How can this idea be formalized in terms of a chain of
translations starting from λdata, passing through λcodata, and ending at the pure
λ-calculus? The main insight is that because functions are just a specific codata
type—one with exactly one destructor corresponding to function application—
the anonymization step relies on mapping all one-destructor codata types into
the single function type.

But the visitor pattern, as defined previously, does not yet fit this restriction!
Consider Figure 4 again. Indeed, the data type T is translated to a codata type
of just one destructor for performing case analysis. However, that destructor
refers to another codata type Tv, with one destructor for every constructor of
the original data type, for representing the branches of a case. How can we
simplify this translation to avoid multiple destructors? Notice how the offending
visitor type Tv is effectively a form of user-defined product, and it only ever
appears as the argument to the CaseT destructor. What is the standard way of
eliminating a compound product argument? Currying! If we inline the auxiliary
Tv type into the codata definition of T by separating each component of Tv as
a separate argument to CaseT, we get the alternative form of the visitor pattern
translation shown in Figure 7. Besides the use of currying, this is the same as
the translation in Section 3.2.

Having mapped data types into the simpler λcodata1, the rest of the path
to the λ-calculus is fairly straightforward. The only thing that remains to be
done is to translate each user-defined codata type into a higher-order function
as shown in Figure 8. At the type level, this involves inlining the definition of
each codata type. At the term level, this involves erasing invocations of codata



A[[U ρ]]Γ = A[[τ ]]Γ if Γ ` H : U ρ→ τ A[[t.H]] = t A[[{H→ t}]] = A[[t]]

Fig. 8: A : λcodata1 → λ anonymizing single-method codata as functions

destructors and single-method codata abstractions. Note that, due to the fact
that the definition of each codata type is inlined, this particular translation is
only well-defined for non-recursive codata types.

The encoding of data types in λdata inside the λ-calculus can now be de-
fined as the composition of these two previous steps: Λ = A ◦ C. Expanding the
definitions, the Λ encoding is:

Λ[[T ρ]] =
(
∀b. (Λ[[τ1]]→ b)→ · · · → (Λ[[τn]]→ b)→ b

) [
Λ[[ρ]]/a

]
Λ[[Ki t]] = λy1 . . . λyn.yi Λ[[t]]

Λ[[case t {K1 x1 → e1, . . .}]] = Λ[[t]] (λx1. Λ[[e1]]) . . .

Note that this encoding is exactly the Church (for untyped) and Böhm-
Berarducci (for typed) encodings for finite types (like sums, products, etc.). If
we wished to extend the encodings to recursive types, we would have to man-
ually extend anonymization (A) to cover some chosen notion of well-founded
type recursion (like the “strictly positive” restriction for inductive types). For
example, encoding the walk down a tree as in Section 2.1 and 3.2 corresponds to
the Church and Böhm-Berarducci encodings of the strictly positive binary tree
data type, which works by replacing recursive occurrences of the main type with
the generic return type.

Both the C and A encodings are correct in terms of Propositions 1 and 2
for the call-by-name semantics, but need some modifications for call-by-value.
The curried form of the visitor pattern, C, requires the same correction as V in
Section 3.5 correction as well, but it also must be careful with constant construc-
tors that take no arguments. For these the branches of case expressions matching
those constructors, the C translation presented in Figure 7 will not insert any
λ-abstractions, thereby exposing the branch to be evaluated anyway even if not
ultimately taken. To be careful about this possibility, we can manually delay
each branch of a case so that it is only evaluated if needed:

C[[Ki V ]] = {CaseT → λy1 . . . λyn. force (yi C[[V ]])}
C[[case t {K1 x1 → e1, . . .}]] = C[[t]].CaseT (λx1. delayC[[e1]]) . . .

Similarly, the anonymizing translation A also requires the use of delay and force
to convert codata objects to delayed thunks.

A[[t.H]] = force t A[[{H→ t}]] = delayA[[t]]
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codata U a where

H1 : U ρ1 → τ1
...

Hn : U ρn → τn


 =

data Umessage a b where
H1 : Umessage ρ1 τ1

...
Hn : Umessage ρn τn

data U a where
ObjectT : (∀b.Umessage a b→ b)→ U a

F[[t.Hi]] = case F[[t]] {ObjectT o → o Hi}
F[[{H1 → e1, . . .}]] = ObjectT (λm. case m {H1 → F[[e1]], . . .})

Fig. 9: F : λcodata → λdata mapping codata to dependent functions.

C Compiling Codata to Data: Dependent functions

Since the semantics of codata form the operational core of an object-oriented
language, the encodings of codata types into languages with data types are doing
the same work as existing encodings of objects. There are two popular encodings
of objects: as multi-entry functions that branch based on a message argument
and as products of functions where messages pick the correct observation to
return. The former is described by Krishnamurthi [27] and latter by Harper
[21] and Pierce [32]. While the multi-entry function technique is easy enough to
define for dynamically typed languages, finding a way to fit it within a static
type discipline is much more challenging, since the return type of the function
depends on the particular entry-point taken (i.e. the particular message given
to it).

Regis-Gianas and Laforgue [34] use the multi-entry function encoding of co-
data as presented in Figure 9. Each destructor of the original U codata type is
represented as a constructor of the Umessage data type representing messages.
Note that the return type of the destructor is recorded along-side the param-
eters to U, which makes Umessage into GADT even if the original U was not.
The codata type U is then encoded as a data type with a single constructor
containing only a function from messages to the appropriate response type for
that particular message.

Because codata is translated into a function that waits for a message symbol,
this encoding automatically preserves the on-demand semantics of codata in
both call-by-name and call-by-value languages. Being behind a λ, the branches
of codata types do not automatically get shared, but the same memoization
optimization seen in Figure 6 can guarantee sharing by giving names to the
branches.

The largest shortcoming of this approach is that (while it works operationally
in many languages) type checking the generated code goes beyond simple types
or polymorphism, as noted by Xi et al. [45]. One way to type-check the result of
the encoding is to use indexed functions—a limited form of dependent function
which uses GADT to represent the argument type—as was done by Regis-Gianas



and Laforgue [34]. The consequence of using such a powerful language construct
is that this encoding is only applicable in languages with a rich enough type
system, such as OCaml, Haskell, and those with dependent types.

To alleviate the dependence on rich types, we can eliminate the GADT defi-
nition of message symbols of the Umessage type by instead recording the response
of the function to each message inside a large product. This results in a product
(where each component is most likely a function) as described in Section 3.3
that follows Harper’s class-based organization of dynamic dispatch [21], giving
the same encoding as Pierce [32].


