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THESIS ABSTRACT

Zachary Joseph Sullivan

Master of Science

Department of Computer and Information Science

June 2018

Title: The Essence of Codata and Its Implementation

Data types are a widely-used feature of functional programming languages

that allow programmers to create abstractions and control branching computations.

Instances of data types are introduced by applying one of a disjoint set of

constructors and are eliminated by pattern matching on the constructor used.

Dually, codata types are defined by their destructors, are introduced by copattern

matching on their context, and eliminated by applying destructors.

We extend motivation for codata types to include adding types that satisfy

the extensional laws and adding an abstraction for constraining clients of code. We

also improve on work implementing codata by developing an untyped compilation

technique for codata that works for both call-by-name and call-by-value evaluation

strategies and scales to simple and indexed type systems. We demonstrate the

practicality of our technique by implementing a prototype compiler and a Haskell

language extension.
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CHAPTER I

OVERVIEW

This thesis develops a notion of codata in programming languages. We

divide this task into two major parts. The first, composed of Chapters II, III, and

IV, considers the basic usage of data and codata, how the two can be combined in a

single programming language, and how codata can compile into data. The second,

composed of Chapters V and VI, discusses the integration of codata with current

programming language systems and applications.

Chapter II introduces codata by comparing and contrasting it with data.

We describe its basic usage and discuss some of the benefits of having codata in a

programming language.

In Chapter III, we formalize a programming language with (co)data and

nested (co)patterns that we call λcop. The language emphasizes the duality of

matching. We construct a type system for λcop and give it both a call-by-value and

call-by-name operational semantics.

In Chapter IV, we specify a new compilation technique from our source

language into a call-by-value and call-by-name target language.

In Chapter V, we describe our implementations of the compilation technique

described in Chapter IV. The implementations include a compiler for λcop that has

backends for Racket, Ocaml, and Haskell and a language extension for the Glasgow

Haskell Compiler (GHC) that adds codata to the Haskell source language. We give

performance figures for our generated code and show how we connect codata to the

IO monad in applications with the Haskell language extension.

In Chapter VI, we shift our focus to further applications of codata. We give

simple examples of how codata can be used in programming scheduling and access

1



control applications. We end by examining the benefits of codata’s equational

properties.

In Chapter VII , we discuss related work and conclude with future directions

that reiterate the message of this theses: codata is a useful notion and can be easily

implemented in current programming languages.
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CHAPTER II

WHAT IS CODATA

Functional programmers are familiar with using data types to create

abstractions for use in their programs. A simple, practical example of data is a

product structure that can be broken into its components. A programmer can

use a product to take in or return multiple values. Data types are also introduced

by choosing from a disjoint union of constructors. The constructed object can be

inspected allowing the computation to branch depending on which constructor was

used. A canonical example of using data to control branching is by using the Bool

type and specifying one computation if the constructor was True and another if it

was False. Thus, data types as a language feature provide a generalized interface

for constructing objects with multiple components and branching computations

on them. The programmer declares data types at the top level of a program and

can use them in the body of the program by introducing instances of the data

by applying constructors to arguments and eliminating instances of the data by

pattern matching case expressions.

We can invert the notion of a data type to get its dual: a codata type. A

codata type describes an object in terms of the observations one can perform on

it. Instead of constructing a data structure, we construct a context or build up the

observations we want to conduct on the codata structure. The codata structure

itself performs copattern matching on these observations.

Describing a structure by their observations or messages reminds one of

object-oriented programming. So the natural question to ask is what are the

benefits of codata and copattern matching? We will answer this question, but let

us first start with presenting some examples of data and codata types.
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2.1 Data and Codata: Definition and Use

To describe the usage of codata types, we will compare their declarations,

introduction forms, and elimination forms with that of data types. For the

following examples, we match data on the left of the pipe with the codata on the

right. We will start with the example of a pair which can be expressed both in

terms of data and codata:

data A×B where

Pair : A,B → A×B

codata A&B where

Fst : A&B → A

Snd : A&B → B

For the product type A × B, we define only a single constructor, Pair, with

two arguments. The constructor also serves as a pattern and we require that it is

always fully applied. For the codata type A & B, which we call “with”, we have

two destructors that project out the first and second element. As with constructors

serving as patterns for data types, the destructors also serve as copatterns. And

while constructors build data, destructors build a form of evaluation contexts which

we call observable, that is, contexts which can be matched by copatterns. The two

declaration forms can be seen as corresponding to the verificationist and pragmatist

approach to inference systems as discussed by Dummett [7]. In the verificationist

approach the focus is on the introduction rules (constructors), and the elimination

rules (i.e. pattern matching) are justified with respect to the introduction rules.

In the pragmatist approach the focus is on the elimination rules (destructors) and

the introduction rules are justified (i.e. copattern matching) with respect to the

eliminations rules.
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To introduce data we only require that we fully apply one of the

constructors, whereas to introduce codata we need to specify a computation to

handle each destructor.

M ≡ (Pair 42 True) : Z× Bool N ≡

 Fst [·]→ 42

Snd [·]→ True

 : Z & Bool

M builds a pair of an integer and a boolean; N uses a less familiar language

construct which we refer to as a list of coalternatives. Coalternative lists are called

“merge” in Hagino’s work [8] and “cofunction” in Regis-Gianas and Laforgue [11].

Each coalternative pairs a copattern with a computation. A copattern describes the

shape of an observable context. Thus, the coalternative “Fst [·] → 42” can be read

as “when my surrounding context has the shape ‘Fst [·]’ return 42”, where “[·]”

refers to the empty context.

To eliminate a data type, we use a case expression that pattern matches

on the different shapes of data. To eliminate a codata type we build a context by

applying a destructor.

case M {Pair x y → if y then x else 0} if Snd N then Fst N else 0

Elimination of data types in the case expression is where branching can occur.

We specify a list of alternatives that pair patterns with computations. In this

case, we only have one constructor to match against. On the right-hand side we

build the contexts Snd [·] and Fst [·] which can also be seen as sending messages

to get the second and first components of the “with” type. Both Snd [·] and Fst [·]

are examples of observable evaluation contexts. Not all evaluation contexts are
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observable; for instance, if [·] then Fst N else 0 is an evaluation context but it is

not observable because we do not have a copattern that matches it.

Another example of codata is the function type. Indeed, a function does

not compute till its surrounding context has the shape [·] R, which we call an

applicative context. One can see a function definition in terms of copattern

matching as follows:

λx.M , {[·] x→M}

where “[·] x” is an applicative copattern. For simplicity, we will often use the more

familiar λ-notation.

As in category theory we would like to turn a data declaration into a

codata declaration by turning the constructors into destructors and vice-versa. For

example, the data declaration which is dual to the “with” type A & B is the sum

type:

data A+B where

Left : A→ A+B

Right : B → A+B

Corresponding to the destructors Fst and Snd, we have now two constructors Left

and Right. We could do the same with the product type by blindly turning the

arrow around:

codata A×d B where

Paird : A×d B → A,B

where we superscript with a d the product connective to represent its dual. In

functional languages we are accustomed to have multiple assumptions, but what

does it mean to have multiple conclusions? Indeed, to capture this we need to step

outside functional programming [4, 6] and embrace effects such as operators that
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modify the flow of control. The dual of the product (also called tensor) is the “par”

connective, written A ` B, which allows one to choose between two observable

contexts.

2.1.1 Nesting. We have seen how to construct data types like A × B

where A and B are atomic types. However, it is also possible to form a nested

product type like (Z × Z) × Z. For example, we can build M of the form

Pair (Pair 2 3) 4. To eliminate an instance of this type we need to pattern match

twice:

case M

{
Pair x y → case x

{
Pair w z → w + z + y

}}

We can nest patterns to shrink our code. Instead of having multiple case

expressions nested that inspect only one layer of the data structure at a time, we

collapse the cases into a single expression with nested patterns.

case M {Pair (Pair w z) y → w + z + y}

In the same manner as patterns, we nest copatterns to match on larger

sections of the observable context at once. So instead of writing:


Fst [·] → 0

Snd [·] →

Fst [·]→ 20

Snd [·]→ 22



 : Z & (Z & Z)
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we write: 
Fst [·] → 0

Fst [Snd [·]] → 20

Snd [Snd [·]] → 22


We read the nested copatterns from the inside out starting with the hole

[·]. The copattern Fst [Snd [·]] can be read as “the observation where the first is

requested after the second”. A different reading of the copattern is that it matches

the context Fst [Snd [·]].

2.1.2 Mixing Patterns and Copatterns. We can also mix pattern

and copattern matching. Indeed, that is what we implicitly do when we invoke a

function: λx. case x

True→ 42

False→ 0


 True ,

 [·] True→ 42

[·] False→ 0

 True

Above-left says that first we copattern match the context [·] x and then we pattern

match on x. Above-right combines these two steps into a single copattern.

We can construct a coalternative expression that will branch on both data

and codata by nesting (co)patterns and mixing them together. We see a larger

example below that combines both nesting and mixing (co)patterns.



Fst [[·] True] → 42

Fst [[·] False] → 5

[Snd [[·] True]] x → x+ 42

[Snd [[·] False]] 0 → 42

[Snd [[·] False]] x → −x


: Bool→ Z & (Z→ Z)
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This expression first expects an applicative context which we see by the shape

of the inner-most copattern (either [·] True or [·] False). Next, the expression

pattern matches the argument stored in the calling context which is a Bool. It then

creates a “with” type whose first element is an integer. The second element is a

function which also expects an integer which can be further analyzed. This example

demonstrates the level of expressivity that nested (co)patterns can provide in a

single coalternative expression.

We notice a point of asymmetry between data and codata, in addition to

not being able to express the dual of the tensor product. Copatterns are expressive

enough to contain patterns, but patterns cannot contain copatterns. This means

that whereas we can express a function A → B as codata we cannot express its

dual, the subtraction connective A−B, which would involve embedding a copattern

in a pattern.

2.2 Strategy Agnostic Code

Codata types allow us to define structures independently of evaluation

strategy. This property is demonstrated by a program that describes an infinite

sequence of zeroes. We will describe the call-by-name, call-by-value, and our

agnostic encoding by showing how we write a program that accesses the second

element of this sequence.

The call-by-name way to encode such a structure is with an infinite list data

type that has one constructor containing the current element and the rest of the

list.

data InfList A where

Cons : A, InfList A→ InfList A
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With our data type defined, we can then define “zeroes” recursively. We

access elements by pattern matching on the structure recursively. The next element

of the structure is only produced when we need it.

let zeroes = Cons 0 zeroes in

case zeroes

Cons x (Cons y ys)→ y

This program will return 0 in call-by-name. Data types in call-by-name languages

are often understood as codata because arguments of constructors are only

evaluated when observed by pattern matching on or returning them.

On the other hand, if we were to evaluate the above expression in a call-by-

value language it would loop forever attempting to construct the value “zeroes”.

The call-by-value solution is to hide the rest of the computation of the infinite

structure behind functions because they are not evaluated until given an argument.

This requires that we change the data declaration to the following one.

data InfList A where

Cons : A, (()→ InfList A)→ InfList A

In addition to changing the type to create the sequence of zeroes, we also

need to change how we build and access elements of our infinite structure. We can

no longer just nest our patterns because we need to apply the second argument of

10



Cons to () to compute the next part of the infinite stream.

let zeroes = Cons 0 (λx. zeroes) in

case zeroes

Cons x xs→

case xs ()

Cons y ys→ y

Thus, in order to represent an infinite structure we need to take the

evaluation strategy into consideration, and write different programs accordingly.

We can avoid this by defining the infinite structure as codata, called Stream, with

two destructors: Head gets the current element and Tail observes the next state of

the stream.

codata Stream A where

Head : Stream A→ A

Tail : Stream A→ Stream A

The notion of a stream indeed captures what lazy evaluation is about,

however, instead of being relegated in the semantics of the language it becomes

apparent in the type. Our previous use of the infinite structure becomes:

let zeroes =

 Head [·]→ 0

Tail [·]→ zeroes

 in

Head (Tail zeroes)
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Because the branches of a codata type are not evaluated until it is placed in a

context that it can copattern match on, we do not have an infinite loop. Since

this is the case for both call-by-name and call-by-value codata, the above program

will produce the same result in both strategies. We argue that it should be the

job of the compiler to produce different code for call-by-value and call-by-name

evaluations, not the programmer.

2.3 Indexed Data and Codata

When we declare a data type, we have in mind how it will be used and have

an added notion of how a well-formed instance of the data will be shaped. Indexed

data allows the programmer to add formation constraints on how we construct an

instance so that we can verify its structure statically. An example of some data for

which this applies is a simple expression language with if-statements and addition,

which can be representing with the following type:

data Expr where

Plus : Expr→ Expr→ Expr

Num : Z→ Expr

Boolean : Bool→ Expr

IfThenElse : Expr→ Expr→ Expr→ Expr

When declaring this type, we have in mind an function that evaluates expressions

to numbers. For instance, Plus (Num 20) (Num 22) evaluates to 42. However,

the data type we declared also allows us to create nonsense expressions such

as Plus (Boolean True) (Num 0) that we cannot evaluate. Using type indices,

we can specify the constraints that Plus can only add numbers and IfThenElse’s

first argument must be a boolean. Statically, the compiler can check that these

12



constraints hold, preventing nonsense expressions. Below, we have added indices to

Expr to encode these constraints; we use an underline to denote indices in types.

data Expr T where

Plus : Expr Z→ Expr Z→ Expr Z

Num : Z→ Expr Z

Boolean : Bool→ Expr Bool

IfThenElse : Expr Bool→ Expr T → Expr T → Expr T

For the Plus constructor, the indices require that the arguments must

have an index of Z and the only way to introduce an index of Z is with the Num

constructor. Thus, trying to construct Plus (Boolean True) (Num 0) will result in a

type error because Boolean True has the type Expr Bool. IfThenElse receives similar

constraints.

Dually, with indexed codata we add constraints to the observation of a

structure. To understand how this can be beneficial, consider a simplified notion

of a server as an example. A server is an infinite object that we can always send

messages to and receive responses from.

codata Server A where

Get : Server A→ A

Post : Server A→ A→ Server A

A server is parameterized by the type that it inputs and outputs. We have

two destructors for the server: a Get message produces an output and a Post

message returns a function from some input to the next state of the server. An

13



example of a server is one that simply returns the last message posted.

let msg = ref ⊥ in

server =

 Get [·] → !msg

[Post [·]] s → msg := s ; server


We represent the server state with a mutable variable “msg”. Initially, the server

starts with no state, which we represent with ⊥ which can be thought of as a null-

pointer. If the client applies the Post observation and gives the returned function

some input, then we recur after updating the server state. If the client applies

the Get destructor, then the server just returns what was stored in its state. An

example client-server interaction is below.

Get (Post (Post server “hi”) “bye”) = “bye”

When the first post is added, the state is set to “hi”. Then the hidden state is

updated from “hi” to “bye” with another Post message, and when we request the

last message by applying Get we receive the string “bye”. What do we do if there

has been no posted messages and we request the last message?

Get server = fail

Where fail corresponds to looping forever. The most obvious way to prevent this

is to return some dummy message when Get is applied before any Post message,

which could be done by returning an optional value or some special string that the

client knows is not truly a post. This solution requires the server’s client to know

the difference between some failure response and a real one. Another solution is
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to use the type system to constrain when a client can send a Get message. Below,

we show how we encode this constraint with indexed codata. Again, we denote the

indices with an underline.

codata Server A T where

Get : Server A Safe→ A

Post : Server A T → A→ Server A Safe

We add an extra type level tag T to our server type that represents whether

or not a message has been sent before. The client can only send the Get message to

a server which is Safe. Posting a message to the server is the only way to create a

Safe server. We also need to update the source code.

let msg = ref ⊥ in

server =
let g =

 Get [·] → !msg

[Post [·]] s → msg := s ; g

 in

{[Post [·]] s→ msg := s ; g}

The new codata has the type Server A T where the tag is not Safe. Inside the

body of server, we see that upon receiving its first message the server will execute

the server g. The inner server g is a safe server so the client could then apply the

Get observation or more Post observations.

The program “Get server” now results in a compile time type error instead

of undefined behavior at runtime. Thus, the safe server object through indexed

codata encodes how its clients interact with it and the type system enforces

this interaction. To reiterate, indexed data constrains the construction of data
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allowing the elimination of the data to consider fewer cases. Dually, indexed codata

constrains the destruction of codata allowing the introduction of the codata to

consider fewer cases.
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CHAPTER III

λcop : A LANGUAGE WITH NESTED (CO)PATTERNS

After seeing some introductory examples demonstrating what codata is, we

would like to formalize it into a source language that we call λcop. The language

is designed with several goals in mind: it should emphasize the duality between

pattern and copattern matching; it should be easy to program with by allowing

(co)patterns to be nested, overlapped, and incomplete; and it should support both

call-by-name and call-by-value evaluation strategies.

In Section 3.1, we describe a new construct for copattern matching that is

dual to the case expression. In Section 3.2, we give the syntax of λcop. In Section

3.3, we give a type system that includes judgements for both well-formed types and

well-typed terms. We end with an operational semantics for both call-by-name and

call-by-value strategies and show that both semantics are safe.

3.1 Programming in λcop

In the examples presented in the introduction, data types were matched

with the explicit case expression, whereas observable contexts were matched

implicitly when they contained a codata that could copattern match on them.

To regain symmetry with respect to matching, we introduce the cocase expression

that explicitly pairs a list of coalternatives with the structure it matches on: an

observable context. Thus, we have the dual matching connectives

case t {alts} cocase o e

where t and e are terms and o is an observable context. Since we have higher order

functions, we do not require that e be a list of coalternatives. Dually, we do not

require that interrogated term of a case expression t be an applied constructor.
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When an observable contexts o meets a list of coalternatives in the cocase

expression, the context is copattern matched by the coalternatives and the

computation branches. Consider the following program containing only implicit

contexts and we will show how we can construct observable contexts and a cocase

expression for it.

Fst


λx.

Fst [·] → x

Snd [·] → x+ 4


 42


From the inside-out, the program first applies a function to 42 building a structure

of type Z & Z, then the Fst branch is observed.

The λ-expression is just syntactic sugar for the copattern match that binds

x in an applicative context. Thus, we can rewrite the inner coalternative list as:

Fst


Fst [[·] x] → x

Snd [[·] x] → x+ 4

 42

 .

The context in which the coalternative list occurs is function application to

42 and then observation of Fst, that is, the context (Fst [[·] 42]). We can now use

the cocase expression to put together this context with the codata object:

cocase (Fst [[·] 42])

Fst [[·] x] → x

Snd [[·] x] → x+ 4


As the example shows, observable contexts can be nested like the copatterns that

match them. With the context written out explicitly, it is more apparent that
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e t , cocase ([·] t) e
H t , cocase (H [·]) t

let x = t in e , cocase ([·] t) {[·] x→ e}
λx. t , {[·] x→ t}
fail , fixx in x

Figure 1. Syntactic sugar

copatterns match on the shapes of contexts in the same way patterns match the

shapes of constructed data.

This style of writing out contexts explicitly as in an abstract machine may

be unfamiliar to functional programmers and can be tedious. Therefore, we give in

Figure 1 some syntactic sugar so that we can still write terms in a λ-calculus style.

Also in the syntactic sugar, we represent failure as an infinitely looping fixed-point

and we have standard let-expressions.

3.2 Syntax

The full λcop syntax is presented in Figure 2. In our meta-language, we use

a superscript to denote a list, thus Sn describes a list of n elements S. If we use

a subscript Si, then we are selecting the ith element of the list S. A list followed

by an arrow in a type Sn → T denotes a function that takes multiple arguments

at once. At the term level, we express applying multiple arguments at once with

a superscript such as f en or subscripts f e0 . . . en. We describe appending one

object x to the front of the list S with x, S. Lastly, for both types and terms

M [N/α] denotes substituting N for α in M . For substitutions on copatterns,

q0[q1] is short-hand for q0[q1/[·]], that is, it describes the copattern q0 after having

substituted q1 for [·].

At the top level, a program expression encapsulates a term within the scope

of a list of (co)data declarations. Data declarations contain a type constructor T
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Top level

program ::= decln; t

decl ∈ declaration ::=
data T Xn where(

Ki : Bm
i → T Xn

)j
codata U Xn where(

Hi : U Xn → Bi

)j
Types

X, Y, Z ∈ type variable
A,B,C ∈ type ::= X | A+ | A−

A+ ∈ positive type ::= T An

A− ∈ negative type ::= U An | A→ B

Terms
x, y, z ∈ variable
e, t, u ∈ term ::= x | fixx in t

| K tn | case t {altn}
| {coaltn} | cocase o t

alt ∈ alternative ::= p→ e
p ∈ patterns ::= x | K pn

coalt ∈ coalternative ::= q → e
q ∈ copatterns ::= [·] | H q | q p

o ∈ observable context ::= [·] | H o | o t

Figure 2. Syntax for λcop
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applied to a list of type variables Xn where the type variables are bound within

the declaration. Each data declaration contains a list of constructors K that are

functions from Bm into the type being defined T Xn. Since the number m in Bm

refers to the arity of the constructor, when m is 0 the constructor K is nullary (e.g.

the unit type constructor ()). Codata declarations are similar except that the list

of constructors are instead destructors which are functions from U Xn to some type

B. Unlike constructors, the arity of each destructor must be one. If we allowed for

multiple output, then we would no longer have a functional language.

Types are either a variable bound in a (co)data declaration, a positive type,

or a negative type. Positive and negative types refer to whether the structure

can be pattern or copattern matched on, respectively. Thus, our notion of type

polarity differs slightly from other presentations of codata where positive represents

observable values and negative represents computations [1, 13]. For λcop, positive

types must be declared data types, whereas negative types are either declared

codata types or the built-in function type A → B. We can mix positive and

negative types freely. For instance, a product of functions would have the type

(A→ B)× (C → D).

The term language for λcop contains constructs for introduction and

elimination of positive and negative types, along with the standard language

features: variables and fix points.

The introduction of a positive type is done with the constructor application

K tn, where K is defined in a data declaration and must appear fully applied. Case

expressions eliminate data types and are constructed from a term and a list of

alternatives. An alternative is composed of a pattern and a term which is run if

the branch is matched; the patterns can bind variables that occur free in the right-
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hand side of the alternative. We have two pattern forms that are variable and

applied constructor, where the latter contains a list of patterns. Patterns are the

only mechanism in λcop for binding variables.

The introduction of a negative type uses a list of coalternatives and the

elimination uses cocase expressions. The latter is composed of an observable

context and a term1. We have three observable contexts and copatterns that

match them: “hole”, or [·], is the observable context representing the current

context which is matched by an identical copattern; H o is the observable context

representing a destructor applied to another context which is matched by the

copattern H q; and, the applicative context o t is matched by an applicative

copattern q p representing function application. The applicative copattern is special

because it contains a pattern, thus allowing copatterns to match on data types as

well as observable contexts!

In our syntax, we see some of the duality between pattern and copattern

matching. Firstly, the introduction forms for both data and codata can exist

alone; that is, applied constructors such as Pair 42 0 and coalternative lists such

as {Fst [·] → 42 , Snd [·] → 0} can be returned and bound to variables. Conversely,

the eliminators for (co)data contain special syntax that cannot exist on its own.

For data, the list of alternatives that consumes data can only occur in a case

expression. For codata, observable contexts can only occur in a cocase expression.

3.3 Type System

The type system for λcop contains judgments for well-typed programs, well-

formed types, well-typed terms, observable contexts, alternatives, coalternatives,

patterns, and copatterns.

1The cocase expression is closely related to Hagino’s “merge′”, but we provide a special syntax
for observable contexts [8]

22



Program ` decln; t : A+

decln = Σ Σ⇒ Γ Σ ` A+ type Γ ` t : A+

` decln; t : A+

Figure 3. Well-typed program.

Types Σ ` A type

data T Xn where
...

∈ Σ Σ ` A type

Σ ` (T Xn)[A/Xi] type

codata U Xn where
...

∈ Σ Σ ` A type

Σ ` (U Xn)[A/Xi] type

Σ ` A type Σ ` B type

Σ ` A→ B type

Figure 4. Type well-formedness judgements

Complete programs in λcop are checked with the judgement ` decln; t : A+ .

We require that the term of a complete program is a data type and that its type is

well-formed. We may use negative types to construct the final value of a program,

but since they cannot be observed, they cannot be the final result [10]. The

list of declarations is used as the environment in which we check that types are

well-formed. For simplicity, we write the list as Σ. In addition to checking well-

formedness, Σ induces an initial mapping Γ, from terms to types, in which we check

the type of the program’s single term. Γ will include all of the constructors and

destructors present in Σ.
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Terms Γ ` t : A

Γ, x : A ` x : A

Γ, x : A ` t : A

Γ ` fixx in t : A

(Γ ` ti : Ai)
n

Γ,K : An → T Bm ` K tn : T Bm

Γ ` t : A+ (Γ | A+ ` alt : B)n

Γ ` case t {altn} : B

Γ | B− ` o : A Γ ` t : B−

Γ ` cocase o t : A

(Γ | A− ` coalt : Bi)
n n > 0

Γ ` {coaltn} : A− Γ ` {} : U An

Figure 5. Judgements for typing terms

Well-formed type judgements have the form Σ ` A type . Intuitively, this

judgement checks that the type constructors in a type have been declared and

that they are fully applied and that all types are only constructed from other well-

formed types.

Well-typed term judgements have the form Γ ` t : A . The variable and

fix-point rules are standard. The case rule requires that the interrogated term

be a positive type, whereas the cocase rule requires that its right-hand side (the

interrogator) be a negative type. We have made a distinction between empty

coalternative lists and non-empty ones, requiring that the former have a codata

type; this restriction is only necessary for our compilation technique, which we will

discuss in Chapter IV.

Alternative and coalternative judgements have the form Γ | A+ ` alt : B

and Γ | A− ` coalt : B , respectively. The distinguished type to the left of

the turnstile is that of the structure being matched, whereas type on the far
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Alternative Γ | A+ ` alt : B

Γ′ `pat p : A+ Γ,Γ′ ` e : B

Γ | A+ ` p→ e : B

Coalternative Γ | A− ` coalt : B

Γ′ | A− `cop q : B Γ,Γ′ ` e : B

Γ | A− ` q → e : B

Figure 6. Judgementes for typing (co)alternatives

right is the type being returned. Another reading of the (co)alternative rule

is “in the environment Γ the (co)alternative (co)alt matches some (co)data

of type A (positive for data and negative for codata) and returns a type B”.

For both alternatives and coalternatives, the (co)pattern match gives us an

extended environment in which we check the type of the right-hand side. The two

judgements are also dual to one another: alternatives match positive types and

coalternatives match negative types.

Pattern and copattern typing judgements have the form Γ `pat p : A and

Γ | A− `cop q : B , respectively. Because they represent the same shapes as the

structures they match, patterns have rules similar to variables and constructors,

whereas copatterns have rules similar to observable contexts. The pattern

judgement guarantees that the constructor pattern is fully applied by checking

the type of the constructor in the context Γ. The constructor pattern rule also

guarantees that the environment is linear as noted by Γ0,Γ1, . . . ,Γj. A linear

context restriction is respected by the applicative copattern rule as well, which

is necessary because applicative copatterns contain patterns. The pattern and
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Patterns Γ `pat p : A

x : A `pat x : A

(Γj `pat pj : Aj)
n

Γ0,Γ1, . . . ,Γn,K : An → T Bm `pat K pn : T Bm

Copatterns Γ | A− `cop q : B

Γ | A− `cop [·] : A−
Γ | A− `cop q : B → C Γ′ `pat p : B

Γ,Γ′ | A− `cop q p : C

Γ | A− `cop q : U Xn

Γ,H : U Xn → B | A− `cop H q : B

Figure 7. Judgements for typing (co)patterns

copattern rules do not appear dual to each other because copatterns can contain

patterns but patterns cannot contain copatterns.

Well-typed observable contexts Γ | A− ` o : B represent a context with

a negative type A− with an output type B. In the same way the pattern rules

are similar to variable and constructor application rules, the observable context

Observable Contexts Γ | A− ` o : B

Γ | A− ` [·] : A−
Γ | A− ` o : B → C Γ ` t : B

Γ | A− ` o t : C

Γ | A− ` o : U Xn

Γ,H : U Xn → B | A− ` H q : B

Figure 8. Judgements for observable contexts
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V ∈ values ::= t
E ∈ eval ctx ::= � | case E {altn} | cocase o E

Figure 9. Evaluation contexts and values for call-by-name λcop

V ∈ values ::= K V n | {[·] x→ t} | {H [·]→ t , → u} | {}
E ∈ eval ctx ::= � | K En | case E {altn}

| cocase o E | cocase ([·] E) V

Figure 10. Evaluation contexts and values for call-by-value λcop

rules are similar to the copattern rules. However we are not binding variables in

observable contexts, and thus, we do not require that the environment is linear.

3.4 Operational Semantics

The semantics for λcop are a union of distinct groups of reduction rules:

standard rules, matching rules, and flattening rules denoted (7→), ( 7→M), and

(7→F ), respectively. We specify both a call-by-value and call-by-name operational

semantics in a manner similar to other strategy-parametric languages such µµ̃

specified by Curien and Herbelin [4] and λlet from Downen [5]. That is, for each

strategy we have a different set of values and evaluation contexts.

In the call-by-name operational semantics, the set of values contains all

terms, and there are only three evaluation contexts: the hole, the argument of

a case expression, and the right-hand-side of a cocase expression (Figure 9).

In the call-by-value version of the operational semantics, the values differ in

that constructors are only applied to values, see Figure 10. To meet this added

constraint on values, there are additional evaluation contexts to evaluate the

arguments of constructors and the top of call-stack in an applicative context.

In Figure 11, we give the parametric operational semantics. Notice that

we only substitute values. The two standard rules ( 7→) are for evaluating terms in
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E[t] 7→ E[t′] where t 7→ t′

fixx in t 7→ t[fixx in t/x]

cocase o {} 7→M fail
cocase ([·] V ) {[·] x→ t} 7→M t[V/x]

cocase (Hi [·]) {Hi [·]→ t , → u} 7→M t
cocase (Hi [·]) {Hj [·]→ t , → u} 7→M u

case Ki V
n {} 7→M fail

case Ki V
n {Ki x

m → u , y → e} 7→M u[Vi/xi]
n

case Ki V
n) {Kj x

m → u , y → e} 7→M e[Ki V
n/y]

cocase o[o′/[·]] t 7→F cocase o (cocase o′ t)

where o′ 6= [·]
cocase [·] t 7→F t

{[·] p→ t , coaltn} 7→F

{
[·] x→ case x

{
p → t
y → {coaltn} x

}}
where x, y 6∈ FV ({coaltn})

x 6∈ FV (t)
coaltn 6= [·]→ u

{Hi [·]→ t , coaltn} 7→F

{
Hi [·] → t

→ {coaltn}

}
where coaltn 6= [·]→ u

{q[[·] p]→ t , coaltn} 7→F

[·] p →
{
q → t
→ {coaltn} p

}
→ {coaltn}


{q[Hi [·]]→ t , coaltn} 7→F

Hi [·] →
{
q → t
→ Hi {coaltn}

}
→ {coaltn}


case t {x→ u , altn} 7→F u[t/x]

case t {Ki x
n → u , altm} 7→F case t

{
Ki x

n → u
y → case y {altm}

}
where y 6∈ FV (altm)

case t {Ki x
n, pi, p

m → u , altk} 7→F case t

{
Ki x

n, xi, p
m → case xi {pi → u}

y → case y {altk}

}
where xi 6∈ FV (u) ∧ y 6∈ FV (altk)

Figure 11. Parametric operational semantics for λcop
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evaluation contexts and the fix expression. When a term is a case expression with

an applied constructor or a cocase expression with a list of coalternatives on the

right-hand side, then the next step is with one of the matching rules. If the set of

(co)alternatives is empty, then the (co)case expression will result in failure. If the

constructor or destructor matches the one in the pattern or copattern, then we take

the first branch which is for success, otherwise we take the second branch as a fall

through branch. The matching rules are not entirely symmetric. Patterns can bind

variables, so the reduction rules contain substitutions. Also copattern matching has

one more rule than pattern matching that matches an applicative context. This

rule will always succeed since it contains the variable pattern only.

3.4.1 Flattening (Co)patterns and (Co)alternatives. The set of

flattening rules are the same in both call-by-name and call-by-value strategies.

These rules are required to use any of the matching rules because they only match

flattened versions of (co)alternative lists. The flattening rules were greatly inspired

by Augustsson’s work on compiling patterns [3]. Here, we will only focus on

flattening copatterns, observable contexts, and coalternatives. Intuitively, the rules

flatten all of these new negative constructs such that only one part of the structure

is matched at a time.

To flattening copatterns, we construct a new coalternative where the first

branch checks the inner-most copattern then checks the rest of the copattern. We

also create the default branch which contains the rest of the coalternatives. For

example,

{Fst [Snd [·]]→ 42} 7→F

Snd [·] → {Fst [·]→ 42}

→ {}


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For the newly flattened copatterns to match observable contexts we also need to

flatten nested observable contexts. This is done by pushing the inner-most contexts

into the new cocase expressions. For example,

cocase (Fst [Snd [·]]) N 7→F cocase (Fst [·]) (cocase (Snd [·]) N)

Finally, we have a rule for removing the useless observable context containing only

the current context [·].

(Co)alternative lists are flattened so that there are only two branches left: a

main branch which checks part of the structure and a default branch that contains

the rest of list. Fst [·] → R

Snd [·] → S

 7→F

Fst [·] → R

→ {Snd [·]→ S}



There are different orders in which we can apply the flattening rules to

evaluate a term in λcop, as shown in the example below.

cocase (Fst [Snd [·]])

{Fst [Snd [·]]→ M}

cocase (Fst [·])

cocase (Snd [·])

{Fst [Snd [·]]→ M}

cocase (Fst [Snd [·]])Snd [·]→ {Fst [·]→ M}

→ {}



F

F

In a more complicated term there will be even more ways that we can choose to

flatten. However, since the flattening rules are confluent the order will not impact

the end result.
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3.5 Type Safety

Both the call-by-value and call-by-name operational semantics are safe in

λcop’s type system. Here we sketch some of the notable details of the proof. In the

proof, we consider both call-by-name and call-by-value at the same time because in

many cases the behavior of the semantics is the same for both strategies.

Our theorem of progress for type safety will only work on closed terms, but

we need to have constructors and destructors in scope to give data and codata their

types. Thus, we consider progress for entire programs instead of terms. Also recall

that fail maps to fixx in x, so we will not get stuck on these terms instead we will

make “progress” forever.

Theorem 1 (Progress). For both the call-by-name and call-by-value operational

semantics, if ` decln; t : A+, then t is either a value or there exists some t′ such

that t 7→ t′.

Proof. By induction on the derivation of ` decln; t : A.

Theorem 2 (Preservation). If Γ ` t : A and there exists t′ such that t 7→ t′, then

Γ ` t′ : A.

Proof. By induction on the derivation Γ ` t : A.

31



CHAPTER IV

HOW TO COMPILE CODATA TO DATA

Having specified the full syntax of λcop and given some basic examples of

codata usage, we now consider how to augment current functional programming

languages with codata and copatterns. We will translate λcop into a common

functional language by first distilling a computational core and then reducing

codata into a target language’s data and function types. This requires a slightly

different method for each evaluation strategy because of their different behavior

in the case of data types. The diagram below depicts the full compilation pipeline

that we present.

λcop

λcopF

λpatN λpatV

F

This chapter is separated into three sections. In Section 4.1, we remove

nested patterns and copatterns, introducing a flattened sub-language λcopF . In

Section 4.2 we specify the target language of our translation: λpat, which represents

a simple functional language with data types. Finally in Section 4.3, we give a

translation from λcopF to both a call-by-name and call-by-value version of λpat.
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As an example throughout the chapter, we will trace the compilation of the

following program that observes the first element of a stream of zeroes.

codata Stream A where

Head : Stream A→ A

Tail : Stream A→ Stream A

cocase (Head [·])

fix s in

Head [·]→ 0

Tail [·]→ s




4.1 Flattening λcop

In order to simplify our final compilation step, we distill a core language

from λcop language that maintains all the expressiveness of the source. In Chapter

II, we saw that nesting offers expressive flexibility for both pattern and copattern

matching. In the operational semantics given in Chapter III, we saw that the

matching rules eliminate evaluation contexts and perform substitution. Thus

they are the core computational rules for λcop. We also saw that the matching

reductions can only occur on a (co)pattern with the form x, K xn, H [·], or [·] x.

These are referred to as flat (co)patterns. Since we rely only on flat (co)patterns to

compute, we can simplify our language by using only flat (co)patterns and preserve

completeness.

The flattening subset of the operational semantics (7→F ) is used to unnest

(co)patterns, to unnest observable contexts (so that they match flat patterns),

and to turn lists of (co)alternatives into just success and failure branches. We

can use these rules as rewriting rules (→F ), where the reflexive, transitive closure
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Terms

x, y, z ∈ variable
e, t, u ∈ term ::= x | e t | fixx in t

| K tn | case t {p→ e , y → u}
| H t | cocase o t | {q → e , → u} | {}

p ∈ patterns ::= x | K xn

q ∈ copatterns ::= H [·] | [·] x
o ∈ observable context ::= H [·] | [·] t

Figure 12. Syntax for λcopF

produces terms only containing flattened (co)patterns. We call this sub-syntax λcopF ,

see Figure 12. The flattened syntax has a non-recursive set of (co)patterns and

observable contexts and a list of (co)alternatives with a maximum length of 2.

After the flattening pass our example program becomes the following:

cocase (Head [·])

fixx in


Head [·] → 0

→

Tail [·] → x

→ {}






Since there are no nested (co)patterns or observable contexts, only the list of

coalternatives is changed to a new list containing only two options. The last branch

that can be checked —after first attempting to match the context Head then Tail—

is the empty list of coalternatives meaning we will fail if we take that branch. This

final default branch will never be evaluated because our example completely covers

the type Stream Z with its coalternatives; however, we still require this unused

branch for compiling to typed languages as we will see in Section 4.3.

After obtaining a term in the sub-syntax, we can simplify the operational

semantics since we no longer need to flatten during evaluation. In Figure 13, we
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E[t] 7→ E[t′] where t 7→ t′

fixx in t 7→ t[fixx in t/x]

cocase o {} 7→M fail
cocase ([·] V ) {[·] x→ t} 7→M t[V/x]

cocase (Hi [·]) {Hi [·]→ t , → u} 7→M t
cocase (Hi [·]) {Hj [·]→ t , → u} 7→M u

case Ki V
n {} 7→M fail

case Ki V
n {Ki x

n → u , y → e} 7→M u[Vi/xi]
n

case Ki V
n {Kj x

m → u , y → e} 7→M e[Ki V
n/y]

Figure 13. Parametric operational semantics for λcopF

show the reduced rules required to evaluate the sub-syntax of λcopF . As before the

semantics is parametric with respect to the definition of evaluation context E and

value V.

To be certain that we can consider only the sub-syntax in our final

compilation step, we must show that our sub-syntax is closed under the total set

of reduction rules. If that is the case, then it is impossible to create a non-flattened

term during evaluation.

Theorem 3 (Closed under (7→→)). If t ∈ λcopF and t 7→→ t′ then t′ ∈ λcopF .

Next we want to consider properties that should be considered when we

are using flattening as a compilation step. Firstly, flattening should be strongly

normalizing so that we can always finish compiling. Secondly, flattening should be

confluent so that we can apply the rules anywhere and not change the meaning of

the program, which we already discussed in Chapter III. Lastly, flattening should

commute with the total set of reduction rules so that we can choose to flatten at

any time.

Theorem 4 (Strong Normalization of →→F ). All reduction sequences t →→F t′ are

finite.

Theorem 5 (Communitivity). If t →→F t1 and t 7→→ t2, then there exists some u

such that t1 7→→ u and t2 →→F u.
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Top level

program ::= decln; t

decl ∈ declaration ::=
data T Xn where(

Ki : Bm
i → T Xn

)j
Types

X, Y, Z ∈ type variable
A,B,C ∈ type ::= X | T An | A→ B

Terms
x, y, z ∈ variable
e, t, u ∈ term ::= x | fixx in t

| K tn | case t {altn}
| λx. t | e t

alt ∈ alternative ::= p→ e
p ∈ patterns ::= x | K xn

Figure 14. Syntax for λpat

4.2 A Target Language

The target language for our translation should meet two requirements.

There should be some built-in codata or observation consuming expression that

we will map all of our codata onto. We use λ-expressions for this because they

are wide spread in programming languages. We do not require data types (since

they too can be encoded with λ-expressions), but we will use them for simplicity.

The second requirement is that if the target language has a type system, then we

require that it supports polymorphism. This is a finer detail that will be discussed

more in the final translation.

We call our target language λpat and specify its syntax in Figure 14. We

return to the applicative forms and function introductions from λ-calculus. For

types, we have data types and one built-in negative type: functions. We only have
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flat patterns because λcopF only has flat patterns, but there is nothing preventing

the target language from being more expressive than the one we specify here. And

lastly, we still have general recursion in the language with the fix expression.

Because λpat is a sub-syntax of λcop and its operational rules are a subset of

(7→), λpat could be regarded as another sub-language of λcop along with λcopF . The

operational semantics for λpat is even smaller than the flattened language since it

only contains the matching rules for case and applicative cocase from λcop.

4.3 Eliminating Codata

The final step in implementing λcop is the elimination of codata. This

requires that we encode the branches specified in coalternative lists with data.

Because the branches represent computations, our translation should guarantee

that the branches are not run until a translated destructor is applied to our object.

Thus far, both call-by-name and call-by-value strategies have received

similar treatment. The source syntax λcop and the flattening rules are the same

for both evaluation strategy. In the operational semantics, the strategies only differ

in constructor and function application since the notion of value changes for call-

by-value and call-by-name. When we compile codata to data, we need to provide

a different method for each strategy because they provide different mechanisms for

controlling when a computation occurs. As we saw in the introduction, we need

to explicitly thunk expressions in call-by-value to control computations, whereas

call-by-name computations only occur when they are called or matched on. We will

describe the call-by-name translation first because it is simpler.

To give a high-level overview of how we compile away codata, we represent

the coalternatives for a given codata type by a data type with a single constructor

that has arguments for holding computations for each destructor of that codata. To
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Declarations[[
data T Xn where(

Ki : Bm
i → T Xn

)j ]]
,

data T Xn where(
Ki : Bm

i → T Xn
)j[[

codata Uh X
n where(

Hi : Uh X
n → Bi

)j ]]
,

data T Xn where
Kh : (Option Bi)

j → T Xn

Terms

[[x]]d , x

[[fixx in t]]d , fixx in [[t]]d
[[K tn]]d , K [[t]]nd

[[case t {(p→ u)n}]]d , case [[t]]d {(p→ [[u]]d)
n}

[[cocase ([·] e) t]]d , [[t]]d [[e]]d

[[cocase (Hi [·]) t]]d , case [[t]]d

 None → fail
Some (K x0 ... Nonei ... xn) → fail

Some (K x0 ... (Some y)i ... xn) → y


where Hi 7→d K

[[{[·] x→ t}]]d , λx. [[t]]d

[[{Hi [·]→ t , → u}]]d , case [[u]]d


None→

Some (K None0 ... (Some [[t]]d)i ... Nonen)

Some (K x0 ... xi ... xn)→
Some (K x0 ... (Some [[t]]d)i ... xn)


where Hi 7→d K

[[{}]]d , None

Figure 15. Translation from λcopF to λpatN

translate the application of a destructor, we match on the translated codata, pull

out the branch of that destructor, and run it.

4.3.1 Call-by-name. In Figure 15, we specify the call-by-name

translation for both declarations and terms. For data declarations, the translation

is the identity function. For codata declarations, we must construct a new data

type with a single constructor where there is an argument for each destructor of

the codata. We need to wrap each branch in an Option type because we allow the

programmer to specify incomplete matches. A branch will be None if it was not

specified in the source program.
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Consider the following translation of the stream codata type.

codata Stream A where

Head : Stream A→ A

Tail : Stream A→ Stream A

data Stream A where

MkS : Option A,Option (Stream A)→ Stream A

We introduce a new data type with the same name and one constructor that pairs

together computations representing both destructors of the stream type. The first

argument of MkS represents the Head destructor and the second represents the Tail.

At the term level, the translation is parameterized by a map d from

destructors to a data constructor created by translating the declarations. The map

is described by the subscripts h on the codata types. For our running example we

have the map

d = {Head 7→ MkS,Tail 7→ MkS}.
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The example term translates as follows.

cocase (Head [·])

fixx in


Head [·]→ 0

→

Tail [·]→ x

→ {}







case


fix s in



case


case None

None→ Some (MkS None (Some s))

Some (MkS x0 x1)→ Some (MkS x0 (Some s))


None→ Some (MkS (Some 0) None)

Some (MkS x0 x1)→ Some (MkS (Some 0) x1)




None→ fail

Some (MkS None x1)→ fail

Some (MkS (Some x0) x1)→ x0

The translation follows the nested structure of flattened coalternatives in the

original term. The stream data type begins with the inner most failure branch,

setting it to None. Then branches are gradually added by casing on their inner

branches and adding computations as new branches. We wrap the whole,

translated codata structure in an Option type because we can give the empty list

of coalternatives as a valid instance of any codata type. Finally, we apply our

observation Head by doing a final case and performing the computation in the

desired first branch.

Not shown in the above example is the translation of a function type.

Variables, fix-points, applied constructors, and case expressions are all translated

by maintaining their structure and applying the translation to sub-terms.

We use None to represent empty sets of coalternatives and unset branches.

Because these can represent different codata types, we rely on polymorphism in the
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Declarations[[
data T Xn where(

Ki : Bm
i → T Xn

)j ]]
,

data T Xn where(
Ki : Bm

i → T Xn
)j[[

codata Uh X
n where(

Hi : Uh X
n → Bi

)j ]]
,

data T Xn where
Kh : (Option (Lazy Bi))

j → T Xn

Terms

[[x]]d , x

[[fixx in t]]d , fixx in [[t]]d
[[K tn]]d , K [[t]]nd

[[case t {(p→ u)n}]]d , case [[t]]d {(p→ [[u]]d)
n}

[[cocase ([·] e) t]]d , [[t]]d [[e]]d

[[cocase (Hi [·]) t]]d , case [[t]]d

 None → fail
Some (K x0 ... Nonei ... xn) → fail

Some (K x0 ... (Some y)i ... xn) → force y


where Hi 7→d K

[[{[·] x→ t}]]d , λx. [[t]]d

[[{Hi [·]→ t , → u}]]d , case [[u]]d


None→

Some (K None0 ... (Some (thk [[t]]d))i ... Nonen)

Some (K x0 ... xi ... xn)→
Some (K x0 ... (Some (thk [[t]]d))i ... xn)


where Hi 7→d K

[[{}]]d , None

Figure 16. Translation from λcopF to λpatV

target language so that the program type checks. In an untyped translation, this is

not a problem.

4.3.2 Call-by-value. Terms do not represent computations in call-by-

value so we require more machinery to prevent computations from running before

a destructor is applied, see Figure 16. If we just put the translated branches into

our generated data type as we did with call-by-name then the computation could

infinitely loop even if not demanded.

We can control when computations happen with λ’s because they have the

property that they only run the body upon observing an applicative context. For

simplicity, we use the following macros to transform types and terms into thunked
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types and terms.

Lazy A ,type ()→ A

force e , e ()

thk e , λ . e

We delay computations with thk and evaluate them on-demand with force. The

type changes to a function () → A as seen in Chapter II. In Chapter V, we show

how to reimpliment these macros with mutation as an optimization.

Since the arguments of our generated constructor must represent

unevaluated branches, we must wrap their types with our lazy type. To visualize

the change, let us again look at the running example:

codata Stream A where

Head : Stream A→ A

Tail : Stream A→ Stream A

data Stream A where

MkS : Option (Lazy A),Option (Lazy (Stream A))→ Stream A

The term translation also needs to produce and eliminate these delayed

computations. We thunk terms before we store elements in the generated
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constructor and force them only when we apply a destructor.

cocase (Head [·])

fixx in


Head [·]→ 0

→

Tail [·]→ x

→ {}







case


fix s in



case


case None

None→ Some (MkS None (Some (thk s)))

Some (MkS x0 x1)→ Some (MkS x0 (Some (thk s)))


None→ Some (MkS (Some (thk 0)) None)

Some (MkS x0 x1)→ Some (MkS (Some (thk 0)) x1)




None→ fail

Some (MkS None x1)→ fail

Some (MkS (Some x0) x1)→ force x0

4.3.3 Correctness. The whole compilation pipeline is denoted as (| − |);

it is the composition of flattening and codata elimination, or [[−]] ◦ (→→F ). To

guarantee our pipeline preserves the meaning of programs, we show it is sound.

Theorem 6 (Soundess). Forall t, t′ ∈ λcop, if t 7→ t′ then for both call-by-name and

call-by-value translation (|t|) 7→→ (|t′|) under their respective evaluation strategy.
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CHAPTER V

IMPLEMENTATIONS

After focusing on codata from a theoretical point of view, we examine

codata in real world compilers and applications. The translation of λcop given in

Chapter IV has been implemented both as a prototype compiler with multiple

backends and as a language extension for Haskell. The compiler’s source code is

an ASCII version of λcop just as it was described in Chapter III. We can compile

it to Racket, Ocaml and Haskell demonstrating that our compilation technique

works in an untyped call-by-value, typed call-by-value, and call-by-name settings,

respectively. As a language extension, we add codata and copattern matching to

the Haskell language.

In the Section 5.1, we will describe the hurdles and optimizations we

discovered while implementing the different backends for our prototype compiler. In

the Section 5.2, we look at the codata extension to Haskell inspecting its benefits,

performance, and giving an example of combining codata with the IO monad.

5.1 λcop Prototype Compiler

Our prototype compiler takes a λcop program and generates a program in

one of our backend languages. Example output of the compiler for each backend

can be found in Appendix A as well as an example of the ASCII source code. For

each target language, we had to alter the translation slightly. In general, we had

issues with code duplication in flattening and preserving extensionality of codata

after compilation. We were able to add a sharing optimization to the generated

code that results in a dramatic performance gain for some applications. The

different target languages also allowed us to simplify the translation in the case

of flattening patterns, handling failures, and handling missing coalternatives.
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5.1.1 Code De-duplication. The flattening rules of the operational

semantics duplicate sub-terms when copatterns are unnested. And since each

copattern needs to be unnested during the compilation process, there is a large

amount of code duplication with a näıve implementation.

{q[[·] p]→ t , coaltn} 7→F


[·] p →

q → t

→ {coaltn} p


→ {coaltn}


{q[Hi [·]]→ t , coaltn} 7→F


Hi [·] →

q → t

→ Hi {coaltn}


→ {coaltn}


In the rules that flatten copatterns above, we see that the rest of the coalternatives

in the two default cases is duplicated.

To resolve this, we simply insert let expressions in our implementation. The

code becomes the following.

{q[[·] p]→ t , coaltn} 7→F

let x = {coaltn} in
[·] p →

q → t

→ x p


→ x



{q[Hi [·]]→ t , coaltn} 7→F

let x = {coaltn} in
Hi [·] →

q → t

→ Hi x


→ x


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Post optimization the output code size is now linear with the input program.

Unless our target language’s compiler can do the common sub-expression

elimination, our output program also uses less memory because each duplication

of coalternatives corresponds to another generated object for the codata type.

5.1.2 Preserving Extensionality for Compiled Codata. Since

the prototype compiler translates λcop programs into real world programming

languages, we can make use of the target language features when observing a

λcop object. When we perform the translation, a codata structure is turned into

a data structure in the target language; in addition, the declared destructors are

turned into functions in the target language that can operate on the compiled

code. For instance, the λcop term {Fst [·] → 42, Snd [·] → True} gets compiled

into some structure x : Z & Bool in our target language along with two functions

Fst : Z & Bool → Z and Snd : Z & Bool → Bool. This allows a programmer in the

target language to build up complex observations for codata from the destructors

created by compilation.

Since our translation creates data structures in the target representing λcop

codata, a programmer can use a case-expression to inspect the object. Thus we

have lost a key property of λcop by compiling it: we do not have a restriction on the

evaluation context in which codata can occur.

The solution to this problem is to use the module system of the target

language. Modules allow us to hide the data types and constructors used to create

our codata. This prevents programmers from inspecting translated codata with

a case-expression preserving the extensionality of our codata. The only way to

interact with codata is through the destructor functions which we expose to the

users.
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5.1.3 Sharing. When we have the same codata appearing in several

places of code, it is more efficient to share computations of observations. A small

example of this is a program that uses a “with” type.

let x =

Fst [·] → 20 + 1

Snd [·] → 0

 in

Fst x + Fst x

If we do not share the computation of the branches of x, then we will compute

20 + 1 twice.

Sharing can potentially result in large performance improvements. The

poster child for this is the Fibonacci stream where sharing the sub-computations

gives us a linear time algorithm.

Fibonacci = fix s in


Head [·] → 1

Head [Tail [·]] → 1

Tail [Tail [·]] → zipWith (+) s (Tail s)


We see the stream s appears duplicated in the last coalternative.

In our call-by-name backend, we get sharing for free because Haskell is in

fact call-by-need. And in our call-by-value backends, we need only make small

changes to the translation given in Chapter IV.

Recall that in the call-by-value translation we controlled the computation of

the branches of coalternative lists by wrapping the terms in thunks. For soundness

thunks are enough, but we can implement the thunks more efficiently if we have

mutation in the target language (as we do in both Ocaml and Racket). We can

rework the definitions of thk and force given in the translation so that we have
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Language Program n Time(s)
Haskell fib with codata 40 0.004
Haskell fib non-sharing 40 10.208
Ocaml fib with codata 40 0.004
Ocaml fib non-sharing 40 48.342
Racket fib with codata 40 0.612
Racket fib non-sharing 40 2.283

Table 1. fib(40) micro-benchmarks for λcop backends.

sharing.

Lazy A ,type Ref (A+ ()→ A)

force e ,

case !e

Left v → v

Right t→ e := Left (t ()) ; force e

thk e , ref (Right λ . e)

In Table 1, we demonstrate that for each backend the code generated for

the Fibonacci stream is the linear time algorithm. This means that we are able to

share sub-computations. The figure compares our generated Fibonacci program to

a handwritten Fibonacci which does not share.

5.1.4 On Specific Backends. Racket was chosen as a backend to

demonstrate the simplicity of our compilation technique. Other work in codata

and copatterns relies on strong type systems existing in a proof assistant or a

language with mild dependent types. Our compilation to Racket is completely
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untyped. Instead of translating the type declarations in a λcop program to a type

declaration in the target, declarations are translated into functions to construct

S-expressions and each destructor is translated into function that pattern matches

on an S-expression return that destructor’s index. For instance, the Stream codata

type would store its branches in the S-expression ‘(Stream ,hd ,tl), where hd

and tl are thunks representing the computation to be run on observation.

For the typed backends, the Ocaml and Haskell translations were nearly

identical to the translations in Chapter IV. We simplified them by making use

of each language’s record syntax. We declared records which gave us projections

instead of having to do extra pattern matches to get a particular branch of a

coalternative.

In Haskell, we were also able to avoid checking and constructing optional

types as in the translation by making use of Haskell’s lazy, polymorphic failure

operation called error. This, along with not having to force and thunk to get

sharing makes the Haskell generated code the simplest of the three backends.

5.2 Copatterns Haskell Language Extension

Our small language λcop is easy to reason about, but it lacks all of the tools

available for more interesting examples using codata, such as effects like IO. To

obtain this extra power, we extended the Glasgow Haskell Compiler with codata

and copattern matching. In addition to having effects, extending Haskell gave us a

strong enough type system to encode indexed codata.

5.2.1 Codata with IO. We modified the small server example from

Chapter II to make use of IO. This allowed us to create a real, executable server

defined by codata as we see written in Haskell below.
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codata Server where

Get :: Server -> (String,Server)

Post :: Server -> String -> Server

The destructor Get will generate output and return a new server whereas Post will

be used to update the servers with some String.

Below we defined a server that acts like a stack. We can continually push

strings on the stack as we create Post messages. Note that we use the ASCII # for

the copattern [·].

stack :: Server

stack =

let g = { Get [# (x:xs)] -> (x,g xs)

; [Post [# xs]] s -> g (s:xs) }

in { [Post #] s -> g [s] }

To connect our server to the real world, we create a simple function that

builds contexts for our codata based on command-line input and output.
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main :: IO ()

main = forever (contextBuilder stack)

where contextBuilder s =

getLine

>>= { # "GET" ->

let (x,s’) = Get s in

putStrLn x >> return s’

; # "POST" ->

do l <- getLine

return (Post s l) }

>>= context

When we read a string "GET" from the console, we apply the Get destructor to

our server, print that output to the console, and continue with the new state of

the server. When we read a string "POST" from the console, we wait for another

line and upon receiving it we add it to our server through the Post destructor.

Of course, we could add the type indices to our server codata type to prevent us

from using Get when the list of posts is empty, but to demonstrate connecting our

codata to IO this is satisfactory.

5.2.2 Performance. We also did a comparison of the GHC language

extension to lazy lists, Table 2. Lists are the standard tool for creating streams

and our comparison demonstrates that codata streams in the extension achieves

the same performance. These benchmarks include the common codata example

programs of Fibonacci and prime number streams.
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Program Implementation n Time(s)
fib codata 1000 0.0355
fib codata 10000 3.116
fib codata 100000 329.979
fib list 1000 0.030
fib list 10000 3.041
fib list 100000 317.293
prime codata 1000 0.064
prime codata 10000 11.772
prime list 1000 0.026
prime list 10000 3.030

Table 2. Micro-benchmarks for GHC implementation.
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CHAPTER VI

APPLICATIONS

The question remains of why we would want have codata in our language

rather than records or object from object-oriented languages. To answer

this question and also to present more examples of codata, we will focus on

programming applications where codata’s features make it a natural abstraction

to use. In addition to programming, we will show that codata can beneficial for

reasoning because of its extensionality laws.

6.1 Programming

Choosing to represent a problem with codata can help with writing

observation based programs like infinite structures, processes, and applications

that constrain the users. These types of programs share the common idea that

when requests are made of an object they trigger computation. We will show an

example of transforming codata to build new codata. Then we demonstrate how

indexed codata can help us encode the notion of resource sharing and for security

by controlling access to operations and information.

6.1.1 Transforming Codata. In his popular paper “Why functional

programming matters”, Hughes demonstrates with a number of useful examples

both that function programming allows us to construct complex programs from

smaller ones and that laziness gives us flexibility when building programs [9]. These

examples include calculating the nth approximation of square-roots, derivatives,

and integrals on-demand. The on-demand aspect of these programs is what

makes them fit for codata because on-demand can also be read as “an action to

perform when an observation is applied”. Codata also has a distinct advantage over
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constructing objects with laziness: it does not depend on a particular evaluation

strategy.

To show that codata is rich enough to create complex programs we will

consider the example of constructing a stream of prime numbers. Like in Hughes,

we will break this problem into smaller parts.

A good starting point when creating a stream of prime numbers is a stream

of ascending numbers. We define a function “countUp” which takes an integer and

returns an infinite stream counting up from that number.

countUp : Z→ Stream Z

countUp =

Head [[·] x] → x

Tail [[·] x] → countUp (x+ 1)


The stream is built by corecursion on its integer argument. Instead of recursing

on a smaller input till a base case, we corecurse on a larger input to infinity. With

“countUp” we can easily construct the stream of positive integers as a function call.

nats : Stream Z

nats = countUp 1

Though we have bound some codata to the identifier “nats”, none of the elements

of the codata have been computed yet. In call-by-name, we have only created a

pointer to a thunk, and in call-by-value, we have only created a structure that

houses two thunks for the Head and Tail.

To get the prime numbers from a stream of positive integers, we need to

be able to remove elements from a stream. We can define a higher-order function

operating on streams called “filter”, which after taking a predicate and a stream
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returns a new stream containing only the elements of the stream that satisfy the

predicate.

filter : (A→ Bool)→ Stream A→ Stream A

filter p s =

let h = Head s in

if p h

then

Head [·] → h

Tail [·] → filter p (Tail s)


else filter p (Tail s)

If the head of the current stream satisfies the predicate than we include it in the

output stream. The output stream is constructed by corecursively calling “filter” on

the tail of the stream. In functional programming languages, “filter” is a common

higher-order function used for lists and other data structures. The stream version

looks and works similar to its data counterparts. Since we are using codata, the

elements of the stream are not computed when we apply “filter” to arguments.

For example, the call “filter (> 0) nats” simply construct a new stream that can

compute the filtered stream when a destructor is applied.

Now that we can remove elements from streams, we need to specify how

to remove elements that are factors of earlier elements in the stream, which is the

essential part of the prime number stream.

sift : Stream Z→ Stream Z

sift s =

Head [·] → Head s

Tail [·] → sift (filter (λx.mod x (Head s)) (Tail s))


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“sift”, when given a stream, constructs a new stream such that when we destruct

with Tail, we compute the next stream that has filtered out all of the multiples of

the current Head. This is done corecursively for each new state of the stream as we

apply Tail destructors.

Finally, with our “sift” helper function we can succinctly describe a stream

of prime numbers as the following.

primes : Stream Z

primes = sift (Tail nats)

If we want the second element of “primes” for instance, we start with the stream

“countUp 1”. Getting the Tail of that stream, we have “countUp 2”. “sift” turns

this into a stream where the Head is 2 and the Tail is a stream where all of the

elements are not divisible by 2, that is, 4, 6, 8, . . . would no longer be in the stream.

We have defined the stream containing the prime numbers by transforming

simpler codata. And since we were using codata, all of the serious work of

computing the elements is only done when we destruct with Head and Tail. This

is strong motivation for codata in a call-by-value setting, but in a call-by-name

language we would get all of the same properties by default.

6.1.2 Programming with Indexed Codata. The call-by-name

motivation for codata is much stronger when we consider how easily we can encode

client-constraining invariants with indexed codata. We will give two examples of

applications with these constraints that are fair scheduling and access control. And

though these encodings are also possible with indexed data, they do not appear as

elegant as their codata counterparts. This is analogous to the fact that all data can

be encoded with Church encodings, but using data makes the code shorter, easier
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to read, and the programmer does not need to worry about how to Church encode

their data.

6.1.2.1 Resource Sharing. A small example of using codata to

describe resource sharing is a fair stream. That is a combination of two streams

with the invariant that we view the elements of each sub-stream at the same rate.

With this description, a fair stream can be seen as a primitive scheduler giving

equal time to two processes. We represent this codata with the following indexed

declaration where the indices are underlined.

codata FairStream X L R where

Left : FairStream X Unread R→ X & FairStream X Read R

Right : FairStream X L Unread→ X & FairStream X L Read

Next : FairStream X Read Read→ FairStream X Unread Unread

The type variable X is the type of elements of the two streams. The

variables L and R range over the indices representing the state of the left and right

stream, respectively. For fair streams, the indices can take the values Read and

Unread. As specified in the definition of the destructor, reading from the left stream

can only be done when the left stream tag is Unread. The result of the projection

is the value in the left of the stream and a new stream where the left stream tag is

set to Read. In order to read from the left side a second time, the client must first

apply the destructor Next which requires that the right stream has been viewed as

well.
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We construct an instance of a fair stream below that represents the integers.

ints =


fix s in



Fst [Left [[·] x]] → −x

Snd [Left [[·] x]] → s x

Fst [Right [[·] x]] → x

Snd [Right [[·] x]] → s x

Next [[·] x] → s (x+ 1)




1

Using a magnitude as the state, the left stream returns a negative view of the state

whereas the right stream returns the positive view. Observing the next section of

the state means we increase the magnitude of the state by 1.

When applying destructors to “ints”, the client must satisfy the invariant

defined in the codata declaration. The client has the freedom to read from each

side in any order, but it must ask for the next section of the fair stream before it

can read from the same side again. When copattern matching on indexed codata

observations that do not satisfy the invariant will not compile. For example, the

following program would result in a type error

Left (Snd (Left ints))

while the following two interactions pass the type checker.

Left (Snd (Right ints))

Right (Snd (Left ints))
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6.1.2.2 Access Control. Indexed codata also provides a secure way

to encode access control. As an example let us consider a filesystem where we can

create, delete, and read files. We have a notion of root and unprivileged user where

the root user has control over which files are in the system while the unprivileged

user can only view files. We would also like unprivileged user to be able to run root

destructors given a password.

We define the filesystem as codata parameterized by the users index, where

we have the user indices of Root and Unprivileged. The index variable U stands for

either root or unprivileged users.

codata FS U where

Promote : FS Unprivileged→ String→ FS Unprivileged + FS Root

Demote : FS Root→ FS Unprivileged

CreateFile : FS Root→ String→ String→ Ref & FS Root

DeleteFile : FS Root→ Ref → FS Root

ReadFile : FS U → Ref → Option String

The Promote destructor allows an Unprivileged instance of the codata to become

a Root instance if it provides the correct password (represented with a String).

Once we have a Root instance we can create files, delete files, and returned to

an Unprivileged instance. Both root and unprivileged users can read files given a

pointer to one.
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We need more type declarations before we can implement an instance of the

filesytem. We use the following codata type for references or pointers to files.

codata Ref where

Reference : Ref → String

The String is just the name of a file. We also require some internal state to hold

the names and contents of files.

type State = List (Ref × String)

We represent the internal state as a list that pairs reference to a file and its

contents. We also have functions “remove : Ref → State → State” and

“lookup : Ref → State → Option String” to modify our state depending on the

reference.

We define a file system with two mutually recursive parts: one with the

index Unprivileged and the other with the index Root. They take the current state

as an argument, but since we are defining the file system as codata a client can

only access the state in the ways defined by the destructors.

unprivileged : State→ FS Unprivileged

unprivileged =



[Promote [[·] st]] p→

case (“password” = p)

True→ root st

False→ unprivileged st

[ReadFile [[·] st]] ref → lookup (Ref ref ) st


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The “unprivileged” function only needs to consider two observations because these

are all that is possible given the index Unprivileged. The Promote destructor will

match its input against the hard-coded password and return either an Unprivileged

or Root indexed filesytem depending on if the password matches. ReadFile simply

does a lookup for the file requested.

root : State→ FS Root

root =



Demote [[·] st]→ unprivileged st

[CreateFile [[·] st]] name contents→

let ref = {Ref [·]→ name} inFst [·] → ref

Snd [·] → root (Cons (ref , contents) st)


[DeleteFile [·] st] ref →

root (remove (Ref ref ) st)

[ReadFile [[·] st]] ref → lookup (Ref ref ) st


For the section of the filesystem where we have Root observations available we

have more to do. Most notably, if we apply the Demote destructor then we return

to a filesystem with a Unprivileged index limiting our possible actions again. The

CreateFile and DeleteFile just manipulate the internal state.

Finally we can construct a starting filesystem by giving an initial state.

filesystem : FS Unprivileged

filesystem = unprivileged Nil
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This instance completely hides the state from both root and unprivileged users.

And because we are using codata, the only way to access this state is with the

declared destructors.

Below is an example of a client interaction with this filesystem instance.

The client tries to promote itself to a root user with a password. If the promotion

succeeds, then the client creates a file before demoting itself and reading the file

from an unprivileged view.

case (Promote filesystem “pass”)

Left fs ′ → None

Right fs ′ →

let m = CreateFile fs ′ “file” “text” in

ReadFile (Demote (Snd m)) (Fst m)

The ability to use certain destructors is maintained by the type indices. For

example, if we were to use CreateFile on the unprivileged filesystem bound in the

Left case, then we would get a type error since we did not have a codata instances

with the Root index. Indexed codata makes it easy for us to define these invariants;

this is a benefit of codata that is an improvement for both call-by-name and call-

by-value strategies.

6.2 Reasoning

Adding codata to a language gives us terms that satisfy the extensional (η)

laws. This allows us to improve our ability to reason about our programs. We will

focus on Haskell because the advantage is more clear cut.

The η-law for functions is commonly seen in definitions of the λ-calculus:

if M is a function, then M ≡η λx.M x. However as we will see, η does not hold
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for functions in Haskell. To understand why this is important, let us consider a

commonly used typeclass in Haskell: the monad.

class Monad M where

return : A→M A

bind : M A→ (A→M B)→M B

As clients of some monad implementation, we expect that it was constructed

in a sensible way. Library writers in Haskell provide this guarantee by showing that

their monad instance satisfies the monad laws. This allows clients to rewrite their

code while preserving its meaning. One of these monad laws is the left-identity law.

Theorem (Left identity).

∀x : A, f : Monad M ⇒ A→M B.

bind (return x) f = f x.

To show why extensionality is important for proving this monad law, we

will use the state monad as an example. The state monad allows us to create a

computation that manipulates state as a side-effect. We can implement the monad

with Haskell’s function type.

type State S A = S → S × A

instance Monad (State S) where

return x = λ s.Pair s x

bind m f = λ s. case (m s) {Pair s′ x→ f x s′}
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And as a Haskell library writer would, we construct a proof the left-identity

law for our implementation.

Proof.

Assume,

bind (return x) f .

By definition of return,

bind (λ s. (s, x)) f .

By definition of bind,

λ s. case ((λ s′. (s′, x)) s) {(s′, x′)→ f x′ s′}.

By β,

λ s. case (s, x) {(s′, x′)→ f x′ s′}.

By pattern match,

λ s. f x s.

By η,

f x.

We have a problem though! The last step of this proof is incorrect because

we do not actually have an η-law for functions in Haskell. A counter example is if f

is ⊥.

λ s.⊥ x s 6≡ ⊥ x
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These two are not equivalent in Haskell because the following context distinguishes

them.

case (λ s.⊥ x s) {y → 0} 6≡ case (⊥ x) {y → 0}

The left case will evaluate to 0 whereas the right will loop forever.

Codata can save us here because we cannot construct the context which

distinguishes these two cases. We start by defining the following special codata

function type.

codata A B where

Ap : A B → A→ B

With this codata type, we have the following η-law.

g : A B ≡η {Ap [·] s→ Ap g s}

This holds because a case expression around a term of type A  B will result in a

type error.

We now redefine our type State and monad instance.

type State S A = S  S × A

instance Monad (State S) where

return x = {Ap [·] s→ Pair s x}

bind m f = {Ap [·] s→ case (Ap m s) {Pair s′ x→ Ap (f x) s′}}

Now our proof of the left-identity law holds because η holds for A B.

Proof.
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Assume,

bind (return x) f .

By definition of return,

bind {Ap [·] s→ Pair s x} f .

By definition of bind,

{Ap [·] s→ case (Ap {Ap [·] s′ → Pair s′ x} s) {Pair s′ x′ → Ap (f x′) s′}}

By copattern match,

{Ap [·] s→ case (Pair s x) {Pair s′ x′ → Ap (f x′) s′}}

By pattern match,

{Ap [·] s→ Ap (f x) s}.

By η,

f x.

Haskell programmers were satisfied with the fast and loose reasoning of the

left-identity law for the state monad before. With codata, we have a more correct

proof and it is not any more complex than the proof with the built-in function

type. So if we need to prove a property that requires η, we can build our structure

with codata instead of data.
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CHAPTER VII

DISCUSSION

7.1 Comparison with other work

Hagino introduced codata types in his seminal paper [8]. His work includes

a dual construct to case expressions which he called “merge”. Merge expressions

take a list of destructor/term pairs and evaluate only when a matching destructor

is applied to them. He notes the asymmetry between case and merge expressions;

case expressions take a term as an argument and a list of alternatives whereas

merge expressions take only a list of coalternatives. He proposes a modification

of merge, “merge′”, that pairs a term with a list of coalternatives. His solution

does not directly align with our approach because we match coalternatives against

observable contexts. Furthermore, Hagino’s copatterns are always flat.

Zeilberger looks at the question of duality of connectives from a logical

point of view [15]. He discusses the duality between the connectives A ⊕ B and

A ⊗ B used to verify and the connectives A & B and A ` B used to refute. His

logical system demonstrated many of the features found in λcop including nested

(co)pattern matching, non-termination, and recursive types.

Downen and Ariola present a sequent calculus perspective of codata and

copatterns [6]. In a sense, their system µµ̃ generalizes Zeilberger’s allowing users

to not only define (co)data types like A × B and A & B, but also functions types

A → B and subtraction types A − B. Downen’s PhD thesis describes a functional

language based on µµ̃, that is, a language without control effects [5]. λcop can be

seen as an extension of this language that adds more flexible (co)patterns.

Abel et al. examine copatterns from a proof assistant perspective [1]. They

give an algorithm for determining if a set of coalternatives has completely covered
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a type. Later, Abel and Pientka use size types to prove well-founded recursion of

coinductive programs written with (co)patterns, thus expanding their utility in a

theorem prover [2].

In the same vein of work, Setzer et al. extended nested pattern flattening

to flattening coverage-complete (co)patterns [12]. Our work can be seen as a more

practically focused approach, that is, we flatten (co)patterns to maintain the order

of checking and handling of missing patterns in the same way that Ocaml and

Haskell evaluate pattern matches.

Thibodeau extends Levy’s call-by-push-value with nested copatterns making

a connection between Levy’s computation types and codata [13]. He compiles away

the nested coverage-complete copatterns into flattened codata. Later, Thibodeau

et al. extend the type system of this language to include indexed codata types

giving examples including a fair bitstream [14], which our fair stream example from

Chapter VI is based on.

Regis-Gianas and Laforgue work on implementing indexed codata types

in Ocaml inspired much of this work [11]. Unlike Thibodeau, they completely

eliminate codata from their language by using generalized algebraic data types

(GADTs) to encode observations. They translate codata type declarations into

query and dispatch GADTs.

7.2 Contributions

The source language λcop which we presented contains both (co)data

and nested (co)patterns. Our language has a unique emphasis on the duality of

matching. We achieve this through a new construct, the cocase expression, which

explicitly matches an observable context and a codata type.
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Operationally, we presented a parametric semantics for (co)pattern matching

which contains a new flattening technique for copatterns. We also specify a syntax

directed technique for eliminating codata into call-by-name and call-by-value

languages. We implemented the compilation technique in a prototype compiler

and as a Haskell language extension. With our technique it was easy to add sharing

as an optimization resulting in the dynamic programming version of Fibonacci.

Finally, we provided more evidence of the importance of codata from a

programming and reasoning point of view.

7.3 Future Work

Codata has different properties from data and these have not been fully

explored from the point of view of a compiler. Perhaps codata’s extensionality

laws make available more optimizations in the intermediate language. When

transforming codata as we did in the prime number example from Chapter VI,

we only composed functions avoiding the serious work of computing the data in

our codata structure. Intuitively, this is how loop fusion works in Haskell to avoid

constructing unnecessary intermediate structures, that is we would rather compute

map (g ◦ f) instead of map g ◦map f .

We explored compiling codata into data in this thesis, but compiling data

into codata is just as feasible. For practical languages, we now know we can

compile SmallTalk to ML, but can we also compile ML to SmallTalk.

This thesis pushed the duality of matching further by introducing the cocase

expression and giving a strategy parametric semantics. However, we still have some

asymmetries in λcop. What do our translations mean in a language where patterns

can contain copatterns in addition to copatterns containing patterns? We know this

would require control effects.
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In conclusion, this thesis presents more examples of use of codata. Our

compilation technique has been shown to work in a number of languages. The most

important future work is to get codata in the hands of as many programmers as we

can. This will for sure foster more collaboration between the theory and practice of

programming languages.
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APPENDIX

CODE GENERATION

Here we show the generated output of the following λcop program for

constructing the codata representing an infinite stream of zeroes, then we access

the third element.

codata Stream a

{ Head : Stream a -> a

, Tail : Stream a -> Stream a }

Head (Tail (Tail (fix x in

{ Head # -> 0

, Tail # -> x })))

We describe the additions in the code generation needed to implement

codata starting from the simplest: call-by-name version; to the most work: the

untyped call-by-value version.

In general, the real code we generate has one change from the translation

given in Chapter IV: the case expressions that were used to get and set fields in

our translated codata are pulled into top-level functions. This has the effect of

shortening the code and making it more readable.

A.1 Haskell

module Main where

import Prelude (Show, IO, error, print, (+))

data Stream a
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= Stream

{ _Head :: a

, _Tail :: Stream a

} deriving Show

set_Head cd br =

Stream (br) (_Tail (cd))

set_Tail cd br =

Stream (_Head (cd)) (br)

prog =

_Head (_Tail (_Tail (let { x =

set_Head (set_Tail ((error "match fail")) (x)) (0) }

in

set_Head (set_Tail ((error "match fail")) (x)) (0))))

main :: IO ()

main = print prog

We make use of the record syntax in Haskell to avoid having to write our

own accessor helper functions. The only helper functions we needed to generate

were the setters which added computation branches. Applying a destructor to

observe the Head or Tail of a stream only requires that we apply the accessors

given by the record declaration. To handle unmatched (co)patterns we simply use

the lazy and polymorphic error function.
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A.2 Ocaml

open Lazy

type (’a) stream = { getHead : ’a lazy_t option;

getTail : ’a stream option lazy_t option; }

exception UnmatchedCopattern

let unmatched = None;;

let setHead ocd br =

match ocd with

None ->

(Some ({ getHead = (Some (br)); getTail = None; }))

| Some cd ->

(Some ({ getHead = (Some (br)); getTail = (cd).getTail; }));;

let obsHead ocd =

match ocd with

None ->

(raise UnmatchedCopattern)

| Some cd ->

match (cd).getHead with

None ->

(raise UnmatchedCopattern)

| Some br ->

(force (br));;

let setTail ocd br =

match ocd with
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None ->

(Some ({ getHead = None; getTail = (Some (br)); }))

| Some cd ->

(Some ({ getHead = (cd).getHead; getTail = (Some (br)); }));;

let obsTail ocd =

match ocd with

None ->

(raise UnmatchedCopattern)

| Some cd ->

match (cd).getTail with

None ->

(raise UnmatchedCopattern)

| Some br ->

(force (br));;

let prog =

(obsHead

((obsTail

((obsTail

(let rec x = lazy ((setHead (((setTail unmatched)

((lazy (force (x)))))))

((lazy (0))))

in (force (x))))))));;

print_int prog;;
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print_newline ();;

Unlike the Haskell implementation we do not have some polymorphic

function error to represent unmatched (co)patterns. To remedy this, the

observation helpers must be able to handle whether or not it is being applied to

the empty list of coalternatives and whether the branch being observed exists. To

handle empty coalternatives, all codata is assumed to be wrapped in an option

type. To handle missing branches, all branches are also wrapped in an option type.

A short coming of this code generation scheme is that if we have a list of

coalternatives being used as a function, then it cannot be empty. Since we wrap

codata in option type, we will get a type error for trying to apply an option type

to a value. This problem does not occur in the Haskell version because error (used

for empty coalternatives and missing branches) is polymorphic and can be of a

function type or data type.

A.3 Racket

#lang racket

(require racket/promise)

(define unmatched ’none)

(define getHead

(lambda (cd)

(match cd

[‘(Stream ,x ,_)

x])))

(define setHead

(lambda (ocd)
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(lambda (br)

(match ocd

[‘none

‘(some ,‘(Stream ,‘(some ,br) ,‘(none )))]

[‘(some ,cd)

‘(some ,‘(Stream ,‘(some ,br) ,(getTail cd)))]))))

(define (obsHead ocd)

(match ocd

[‘none

(error "unmatched (co)pattern")]

[‘(some ,cd)

(match (getHead cd)

[‘none

(error "unmatched (co)pattern")]

[‘(some ,br)

(force br)])]))

(define getTail

(lambda (cd)

(match cd

[‘(Stream ,_ ,x)

x])))

(define setTail

(lambda (ocd)

(lambda (br)

(match ocd
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[‘none

‘(some ,‘(Stream ,‘(none ) ,‘(some ,br)))]

[‘(some ,cd)

‘(some ,‘(Stream ,(getHead cd) ,‘(some ,br)))]))))

(define (obsTail ocd)

(match ocd

[‘none

(error "unmatched (co)pattern")]

[‘(some ,cd)

(match (getTail cd)

[‘none

(error "unmatched (co)pattern")]

[‘(some ,br)

(force br)])]))

(define prog

(obsHead

(obsTail

(obsTail (letrec ((x ((setHead ((setTail unmatched) (lazy x)))

(lazy 0))))

((setHead ((setTail unmatched)

(lazy x)))

(lazy 0)))))))

prog
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Since we are representing our codata as S-expressions, we need to generate a

third helper (on top of the two for the Ocaml code generation) for accessing parts

of the S-expressions. After that, the generated code looks the same as the Ocaml

code. Racket does not have the same short coming as Ocaml when using the empty

list of coalternatives as a function because it is untyped; running the code will

result instead just a runtime error, which is the same behavior as the operational

semantics for λcop specifies.
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