
Strictly Capturing Non-strict Closures
Zachary J. Sullivan

University of Oregon

Computer and Information Science

Eugene, Oregon, United States

zsulliva@cs.uoregon.edu

Paul Downen

University of Oregon

Computer and Information Science

Eugene, Oregon, United States

pdownen@cs.uoregon.edu

Zena M. Ariola

University of Oregon

Computer and Information Science

Eugene, Oregon, United States

ariola@cs.uoregon.edu

Abstract
All functional languages need closures. Closure-conversion

is a compiler transformation that embeds static code into the

program for creating and manipulating closures, avoiding

the need for special run-time closure support. For call-by-

value languages, closure-conversion has been the focus of

extensive studies concerning correctness, such as type preser-

vation and contextual equivalence, and performance, such as

space usage. Unfortunately, non-strict languages have been

neglected in these studies. This paper aims to fill this gap.

We begin with both a call-by-name and a call-by-need

source language whose semantics automatically generates

closures at run-time. Next, we give type-preserving closure-

conversions for these two non-strict languages into a lower-

level target languagewithout automatic closure generation at

run-time. Despite the fact that our source languages are non-

strict, we show that closures must be created eagerly, which

requires a strict notion of product in the target language. We

extend logical relation techniques used to prove compiler

correctness for call-by-value languages, to apply to non-

strict languages too. In doing so, we identify some important

properties for reasoning about memoization with a heap.

CCS Concepts: • Software and its engineering→ Source
code generation.

Keywords: closure-conversion, call-by-name, call-by-need

ACM Reference Format:
Zachary J. Sullivan, Paul Downen, and ZenaM. Ariola. 2021. Strictly

Capturing Non-strict Closures. In Proceedings of the 2021 ACM
SIGPLANWorkshop on Partial Evaluation and ProgramManipulation
(PEPM ’21), January 18–19, 2021, Virtual, Denmark. ACM, New York,

NY, USA, 16 pages. https://doi.org/10.1145/3441296.3441398

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

PEPM ’21, January 18–19, 2021, Virtual, Denmark
© 2021 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-8305-9/21/01. . . $15.00

https://doi.org/10.1145/3441296.3441398

1 Introduction
Correctly passing code requires closures: a data structure

combining code with its environment. This is pervasive

in functional languages, where higher-order function ar-

guments need to close over their free variables. The early

abstract machines for the _-calculus, like the SECD [15]

and Krivine [14] machines, automatically create closures at

runtime. Instead, closure-conversion embeds the instructions

for creating and manipulating these closures statically at

compile-time, writing them into the syntax of the program.

The transformed program is closer to real machine code,

which only has pointers to top-level functions absent of any

local scope. Previous work has investigated the efficiency

[3, 28, 29] and correctness [2, 19, 23] of closure-conversion,

and explored its application in more expressive languages

with dependent types [6] and mutable references [17].

This line of work, however, mostly applies to just strict

languages. Non-strict languages are rarely discussed, if at

all. Some work [3, 23] focused on languages in continuation
passing style (CPS), which subsumes call-by-value and call-

by-name semantics, but call-by-need is still left out. A call-by-

need CPS exists [22], but it requires a mutable store and is not

used in compilers for lazy languages. Rather, these compilers,

such as those for Lazy ML [5] andMiranda [24], rely on other

methods such as lambda-lifting. Haskell’s premier optimizing

compiler, GHC [26], does use closures, but they are only

considered as a small part of low-level code generation.

Delaying low-level details, like closures, can have a serious

cost to an optimizing compiler. Most optimizations are done

in the middle of the compiler pipeline, usually expressed as

transformations in the compiler’s intermediate language. If
closures are not introduced in this phase, they cannot par-

ticipate in the majority of the optimizations being done. In

contrast, work on intermediate languages that can express

low-level details like unboxed values [25], the arities and

representations of types [8], and join points [18] allows com-

pilers to generate more efficient code, by having different

optimizations iteratively improve one another’s output.

But doing this for closures—in the context of an interme-

diate language for a non-strict compiler—is not such an easy

feat. Of course non-strict languages create more closures:

every function argument or variable binding is delayed, cre-

ating closures that are not needed in a strict language. But

just making more closures is not enough: closures must be

strict! In a low-level language without automatic run-time

https://doi.org/10.1145/3441296.3441398
https://doi.org/10.1145/3441296.3441398

PEPM ’21, January 18–19, 2021, Virtual, Denmark Zachary J. Sullivan, Paul Downen, and Zena M. Ariola

closure support, the compile-time code for creating closures

cannot be lazily evaluated because by then it is too late to

capture the long-gone static environment. Instead, the en-

vironment must be captured now when it is available, with-

out inadvertently evaluating anything in the environment.

Closure-conversion in a non-strict language is a delicate

dance between the lazy and the eager.

This paper investigates the effect of evaluation strategy on

closure-conversion, with the interest of promoting closure-

conversion as a transformation in a non-strict intermedi-

ate language suitable for optimization. After reviewing the

well-known strict closure-conversion (Section 2) and its cor-

rectness, we show how closure-conversion of a non-strict,

call-by-name language cannot be embedded into a purely

call-by-name target language (Section 3), but rather strict-

ness is needed in the target language to create closures at

the right moment. Similarly, we show how call-by-need lan-

guages introduce yet another unintended interaction (Sec-

tion 4): some closures need to be memoized when they are

run, but others don’t. The contributions of this paper are:

• We specify call-by-name closure-conversion (Section 3.2)

to a call-by-value target and prove its correctness (The-

orems 3.1 and 3.3) with a logical relation between pro-

grams before and after conversion (Lemma 3.2).

• We specify call-by-need closure conversion (Section 4.3)

to a call-by-value target with mutable state to perform

memoization. We conjecture this conversion is cor-

rect, providing a heap-indexed logical relation (Con-

jecture 4.2), and identify several important properties

for reasoning about memoization with an explicit heap.

• We introduce the concept of partial closure-conversion
(Section 5). In a manner similar to the worker/wrapper

transformation for unboxed types, only some closures

are written statically into the program with the rest

generated automatically at run-time. We illustrate that

the same partial closure-conversion works for both

call-by-name and call-by-need languages, and can cap-

ture memoization implicitly, without explicit mutable

state. By its nature, partial closure-conversion requires

both strict and non-strict bindings in the same inter-

mediate language.

2 Strict Closure-Conversion
High-level, higher-order languages—like typical functional

languages—make closures implicit. In these languages, the

run-time system will automatically generate closures as they

are needed while the program executes. In contrast, lower-

level languages—like C—do not; they may have raw function

pointers, but they do not close over their environment. In-

stead, C programmers must manually insert the instructions

into their programs to capture and access a local environ-

ment with a function pointer.

𝑛 ∈ Z
Γ ⊢ 𝑛 : int

Num 𝑥 :𝜏 ∈ Γ
Γ ⊢ 𝑥 : 𝜏

Var
Γ, 𝑥 :𝜏 ⊢ 𝑀 : 𝜏 ′

Γ ⊢ _𝑥 .𝑀 : 𝜏 → 𝜏 ′
Lam

Γ ⊢ 𝑀 : 𝜏 ′ → 𝜏 Γ ⊢ 𝑁 : 𝜏 ′

Γ ⊢ 𝑀 𝑁 : 𝜏
App

Γ ⊢ 𝑀 : 𝜏 Γ, 𝑥 : 𝜏 ⊢ 𝑀 : 𝜏 ′

Γ ⊢ let 𝑥 =𝑀 in 𝑁 : 𝜏 ′
Let

Figure 1. Source typing rules

⟨Σ ∥ 𝑛⟩ ⇓V 𝑛
Num

Σ(𝑥) = 𝑉

⟨Σ ∥ 𝑥⟩ ⇓V 𝑉
Var

⟨Σ ∥ _𝑥. 𝑀⟩ ⇓V (Σ, _𝑥 . 𝑀) Lam

⟨Σ ∥ 𝑀⟩ ⇓V (Σ′, _𝑥 . 𝐿)
⟨Σ ∥ 𝑁 ⟩ ⇓V 𝑊 ⟨Σ′, 𝑥 ↦→𝑊 ∥ 𝐿⟩ ⇓V 𝑉

⟨Σ ∥ 𝑀 𝑁 ⟩ ⇓V 𝑉
App

⟨Σ ∥ 𝑀⟩ ⇓V 𝑊 ⟨Σ, 𝑥 ↦→𝑊 ∥ 𝑁 ⟩ ⇓V 𝑉

⟨Σ ∥ let 𝑥 =𝑀 in 𝑁 ⟩ ⇓V 𝑉
Let

Figure 2. Strict source semantics

Closure-conversion is tasked with translating from this

high- to low-level; to remove the need for automatic run-time

closure generation, by instead embedding the introduction

and elimination of closures into the syntax of a given pro-

gram. As review, let’s look at closure-conversion in strict

languages. Consider the following program:

let 𝑥 = (let 𝑦 = 2 + 1 in _𝑧.𝑦) in (𝑥 3) + (𝑥 4) (1)

When 𝑥 is called, 𝑦 = 3 is no longer in scope. So the in-

terpreter must package this binding along with _𝑧.𝑦, to

remember it when the function is called. This program is

closure-converted to:

let 𝑥 = (let 𝑦 = 2 + 1 in pack ((𝑦), _((𝑦), 𝑧). 𝑦))
in (unpack 𝑥 as (𝑒, 𝑓) in 𝑓 (𝑒, 3)) +

(unpack 𝑥 as (𝑒, 𝑓) in 𝑓 (𝑒, 4))

Here, the _-expression _𝑧.𝑦 in the source is replaced with

a data structure containing a representation of the environ-

ment and a closed function which accesses that environment.

Now, instead of the interpreter, the function definition and

call site themselves include logic for packing and unpacking

its local environment to find the binding of 𝑦.

2.1 Strict Source Language: V
To specify closure-conversion in general, we need to de-

fine the source language being translated. For illustration,

we will use a small expression language with constants,

_-expressions, and let-expressions. Let-expressions are in-

cluded as real syntax, instead of syntactic sugar for applied

functions, since they can be given a more direct translation.

𝐿,𝑀, 𝑁 ∈ Exp ::= 𝑛 | 𝑥 | _𝑥 .𝑀 | 𝑀 𝑁 | let 𝑥 =𝑀 in 𝑁

Strictly Capturing Non-strict Closures PEPM ’21, January 18–19, 2021, Virtual, Denmark

Δ; Γ ⊢ 𝑛 : int
Num 𝑥 :𝜏 ∈ Γ

Δ; Γ ⊢ 𝑥 : 𝜏
Var

𝜖 ;𝑥 :𝜏 ⊢ 𝑀 : 𝜎

Δ; Γ ⊢ _𝑥. 𝑀 : 𝜏 → 𝜎
Closed Lam

Δ; Γ ⊢ 𝑀 : 𝜏 → 𝜎 Δ; Γ ⊢ 𝑁 : 𝜏

Δ; Γ ⊢ 𝑀 𝑁 : 𝜎
App

Δ; Γ ⊢ 𝑀 : 𝜏 Δ; Γ, 𝑥 : 𝜏 ⊢ 𝑀 : 𝜏 ′

Δ; Γ ⊢ let 𝑥 =𝑀 in 𝑁 : 𝜏 ′
Let

Δ; Γ ⊢ 𝑀0 : 𝜏0 . . . Δ; Γ ⊢ 𝑀𝑛 : 𝜏𝑛

Δ; Γ ⊢ (𝑀0, . . . , 𝑀𝑛) : 𝜏0 × · · · × 𝜏𝑛
Product

Δ; Γ ⊢ 𝑀 : 𝜎0 × · · · × 𝜎𝑛 Δ; Γ, 𝑥0:𝜎0 . . . 𝑥𝑛 :𝜎𝑛 ⊢ 𝑁 : 𝜏

Δ; Γ ⊢ case𝑀 of (𝑥0, . . . , 𝑥𝑛) → 𝑁 : 𝜏
Case

Δ; Γ ⊢ 𝑀 : 𝜏 [𝜎/𝑋]
Δ; Γ ⊢ pack𝑀 : ∃𝑋 . 𝜏

Pack

Γ ⊢ 𝑀 : ∃𝑋 . 𝜎 Δ, 𝑋 ; Γ, 𝑥 :𝜎 ⊢ 𝑁 : 𝜏

Δ; Γ ⊢ unpack𝑀 as x in 𝑁 : 𝜏
Unpack

Figure 3. Strict target language typing rules

⟨Σ ∥ 𝑛⟩ ⇓V′ 𝑛
Num

Σ(𝑥) = 𝑉

⟨Σ ∥ 𝑥⟩ ⇓V′ 𝑉
Var

⟨Σ ∥ _𝑥. 𝑀⟩ ⇓V′ _𝑥. 𝑀
Lam

⟨Σ ∥ 𝑀⟩ ⇓V′ _𝑥 . 𝐿

⟨Σ ∥ 𝑁 ⟩ ⇓V′ 𝑉 ⟨Y, 𝑥 ↦→ 𝑉 ∥ 𝐿⟩ ⇓V′ 𝑅

⟨Σ ∥ 𝑀 𝑁 ⟩ ⇓V′ 𝑅
App

⟨Σ ∥ 𝑀⟩ ⇓V′ 𝑊 ⟨Σ, 𝑥 ↦→𝑊 ∥ 𝑁 ⟩ ⇓V′ 𝑉

⟨Σ ∥ let 𝑥 =𝑀 in 𝑁 ⟩ ⇓V′ 𝑉
Let

⟨Σ ∥ 𝑀0⟩ ⇓V′ 𝑉0 . . . ⟨Σ ∥ 𝑀𝑛⟩ ⇓V′ 𝑉𝑛

⟨Σ ∥ (𝑀0, . . . , 𝑀𝑛)⟩ ⇓V′ (𝑉0, . . . ,𝑉𝑛)
Product

⟨Σ ∥ 𝑀⟩ ⇓V′ (𝑉0, . . . ,𝑉𝑛)
⟨Σ, 𝑥0 ↦→ 𝑉0, . . . , 𝑥𝑛 ↦→ 𝑉𝑛 ∥ 𝑁 ⟩ ⇓V′ 𝑅

⟨Σ ∥ case𝑀 of (𝑥0, . . . , 𝑥𝑛) → 𝑁 ⟩ ⇓V′ 𝑅
Case

⟨Σ ∥ 𝑀⟩ ⇓V′ 𝑉

⟨Σ ∥ pack𝑀⟩ ⇓V′ pack 𝑉
Pack

⟨Σ ∥ 𝑀⟩ ⇓V′ 𝑉 ⟨Σ, 𝑥 ↦→ 𝑉 ∥ 𝑁 ⟩ ⇓V′ 𝑅

⟨Σ ∥ unpack𝑀 as 𝑥 in 𝑁 ⟩ ⇓V′ 𝑅
Unpack

Figure 4. Strict target language semantics

Type System. The source type system is a typical exten-

sion of the simply typed _-calculus shown in Figure 1. This

type system serves to show how closure-conversion pre-

serves types, and how it compares with types in the target.

𝜏, 𝜎 ∈ Type ::= int | 𝜏 → 𝜎

Γ ∈ Type Environment ::= Y | Γ, 𝑥 :𝜏

Operational Semantics. To emphasize the creation and

destruction of closures, we present a big-step operational

semantics with a local environment wherein the construction

of closures is explicit. It evaluates a pair of an environment

and an expression, i.e. a configuration, to a value.

𝐶 ∈ Configuration ::= ⟨Σ ∥ 𝑀⟩
Σ ∈ Environment =Variable ⇀ Value

𝑉 ,𝑊 ∈ Value ::= 𝑛 | (Σ, _𝑥 . 𝑀)
The rules for strictly evaluating an expression are pre-

sented in Figure 2. In our source semantics, the Lam rule

knows how to automatically construct a closure and the

App rule knows how to unpack it, instantiate its local en-

vironment, and jump into the body with the value of the

actual parameter. Closure-conversion aims to remove any

knowledge of closures from these run-time rules.

2.2 Strict Target Language:V ′

The target language of closure-conversion can sometimes

be the same as, or a sub-language of, the source. However,

in our case, the target is a different language, extending the

source with products and existentials needed for closure-

conversion. Also note that in the target, all _-expressions

will be closed.

𝐿,𝑀, 𝑁 ∈ Expression ::= 𝑛 | 𝑥 | _𝑥 .𝑀 | 𝑀 𝑁

| let 𝑥 =𝑀 in 𝑁 | (𝑀0, . . . , 𝑀𝑛)
| case𝑀 of (𝑥0, . . . , 𝑥𝑛) → 𝑁

| pack𝑀 | unpack𝑀 as 𝑥 in 𝑁

Type System. New types are added to the target language

for products and existentials. The latter requires the addition

of type variables as well. To keep track of the type variables

introduced by existential types, we add a typing context for

live type variables Δ, which guarantees their freshness.

𝜏, 𝜎 ∈ Type ::= int | 𝜏 → 𝜎

| 𝜏0 × · · · × 𝜏𝑛 | 𝑋 | ∃𝑋 . 𝜏

Γ ∈ TypeEnv ::= Y | Γ, 𝑥 :𝜏
Δ ∈ TypeVars ::= Y | Δ, 𝑋

The full set of typing rules is given in Figure 3. The rule essen-

tial to closure-conversion is the closed function rule which

types the body of the function with nothing in the context

except the formal parameter. This ensures that the run-time

semantics need not generate closures for _-expressions.

Operational Semantics. In the source language, the set

of values was not a subset of the surface language because

evaluation rules must form and return closures instead of

_-expressions. In contrast, the closed functions of the target

language are already values; they can be compiled simply

into function pointers.

𝐶 ∈ Config ::= ⟨Σ ∥ 𝑀⟩
Σ ∈ Env =Variable ⇀ Value

𝑉 ,𝑊 ∈ Value ::= 𝑛 | _𝑥. 𝑀 | (𝑉0, . . . ,𝑉𝑛) | pack 𝑉
The source (Figure 2) and target (Figure 4) language seman-

tics both contain a Lam and anApp rules, but they behave dif-
ferently. In the target, Lam simply returns the _-expression; it

PEPM ’21, January 18–19, 2021, Virtual, Denmark Zachary J. Sullivan, Paul Downen, and Zena M. Ariola

Expression Translation
CCV⟦𝑛⟧ = 𝑛

CCV⟦𝑥⟧ = 𝑥

CCV⟦let 𝑥 =𝑀 in 𝑁⟧ = let 𝑥 =CCV⟦𝑀⟧ in CCV⟦𝑁⟧
CCV⟦_𝑥. 𝑀⟧ = pack ((®𝑦), _((®𝑦), 𝑥).CCV⟦𝑀⟧)

where FV(_𝑥 .𝑀) = ®𝑦 = 𝑦0, . . . , 𝑦𝑛
CCV⟦𝑀 𝑁⟧ = call (CCV⟦𝑀⟧,CCV⟦𝑁⟧)

call(𝑀, 𝑁) def

= unpack𝑀 as (𝑦, 𝑓) in 𝑓 (𝑦, 𝑁)
Type Translations

ValV⟦int⟧ = int
ValV⟦𝜏 → 𝜎⟧ = ∃𝑋 .𝑋 × (𝑋 × ValV⟦𝜏⟧ → ValV⟦𝜎⟧)

EnvV⟦Y⟧ = Y

EnvV⟦Γ, 𝑥 :𝜏⟧ = EnvV⟦Γ⟧, 𝑥 :ValV⟦𝜏⟧

Figure 5. Strict closure-conversion: V → V ′

does not construct a closure since the function must already

be closed. At the call-site, the target App rule correspond-

ingly expects to find just a _-expression, and jumps into a

function body with only a binding for its parameter in the

otherwise-empty environment.

2.3 Transformation
Strict closure-conversion is shown in Figure 5. In the trans-

lation of expressions, functions are transformed into pack-

ages containing a closed function and a data structure. The

generated closed function knows how to access this data

structure to re-instantiate the local environment in its body.

(We use pattern-matching _-expressions as syntactic sugar

for case expressions.) Applications (𝑀 𝑁) are transformed—

assuming𝑀 will evaluate to a closure—into code extracting

the environment and function from𝑀 , and then calling that

function with the environment and argument 𝑁 , as defined

in the shorthand call(𝑀, 𝑁).
Since functions become data structures, we must translate

the type of a program as well. Function types are translated

to an existential which hides the type of environment used.

Thus, two functions with the same type but different environ-

ments will still have the same type after closure-conversion.

For instance, _𝑥. 𝑥 and _𝑥 .𝑦, which are both functions of

type int → int, will be converted into programs of type

∃𝑋 .𝑋 × (𝑋 × int → int).

2.4 Properties
Type Preservation. Closure-conversion is defined so that

all well-typed expressions in the source are translated to

well-typed expressions in the target. This can be proved by

induction over the typing derivation.

Theorem 2.1 (Type Preservation). If Γ ⊢ 𝑀 : 𝜏 , then
EnvV⟦Γ⟧ ⊢ CCV⟦𝑀⟧ : ValV⟦𝜏⟧.
Semantics Preservation. The correctness theorem that

we will focus on is that a program and its translation evaluate

MV⟦𝜏⟧ def

= {(𝐶,𝐶 ′) | ∀𝑉 . (𝐶 ⇓V 𝑉) =⇒
∃(𝑉 ,𝑉 ′) ∈ VV⟦𝜏⟧. (𝐶 ′ ⇓V′ 𝑉 ′)}

EV⟦Γ⟧ def

= {(Σ, Σ′) | ∀(𝑥 :𝜏) ∈ Γ.
(Σ(𝑥), Σ′(𝑥)) ∈ VV⟦𝜏⟧}

VV⟦int⟧ def

= {(𝑛, 𝑛) | 𝑛 ∈ Z}
VV⟦𝜏 → 𝜏 ′⟧ def

= {((Σ, _𝑥 . 𝑀), pack (𝑉 ′
𝑒 ,𝑉

′
𝑓
))

| ∀(𝑊,𝑊 ′) ∈ VV⟦𝜏⟧.
(⟨Σ, 𝑥 ↦→𝑊 ∥ 𝑀⟩
, ⟨Y ∥ 𝑉 ′

𝑓
(𝑉 ′

𝑒 ,𝑊
′)⟩) ∈ MV⟦𝜏 ′⟧}

Figure 6. Strict closure-conversion logical relations

to the same integer value.The proof depends on a family of

logical relations, given in Figure 6, between source and target

syntactic categories indexed by the type of the term
1
. For

example, elements of the relationVV⟦int → int⟧ are pairs

of source and target values that behave like functions from

integers to integers. The relations have the signatures:

MV ∈ Type → P(Config × Config)
EV ∈ TypeEnv → P(Env × Env)
VV ∈ Type → P(Value × Value)

The “top level” relation in the family is for source and

target configurationsMV . If the source configuration eval-

uates to a value, then the target configuration must evaluate

to a related value
2
. The relation EV states that a source and

target environment are related when they map variables to

values related at their assigned types. Finally, the relation

VV between source and target values varies depending on

the type. Numbers are related only if they are identical. For

function types, a source closure is related to a packed tar-

get value if they behave the same for any pair of related

source-target arguments. That is, the source configuration

performing the function call must be related to the target

configuration performing the function call.

The adequacy lemma shows that well-typed terms in the

source translate to terms that, when both are lifted to con-

figurations with related environments, produce related con-

figurations. It can be proved by induction on the typing

derivation (as shown in Appendix A).

Lemma 2.2 (Adequacy). If Γ ⊢ 𝑀 : 𝜏 and (Σ, Σ′) ∈ EV⟦Γ⟧,
then (⟨Σ ∥ 𝑀⟩, ⟨Σ′ ∥ CCV⟦𝑀⟧⟩) ∈ MV⟦𝜏⟧.

The correctness of whole programs closure-conversion is a

consequence of adequacy applied to an empty environment.

1
For readability, we use different colors for source and target syntax. For

syntax that is the same in the source and target, the font is black.

2
Unfortunately, this also means that if a source configuration does not

evaluate to a value, then any target configuration is related to it trivially.

When considering well-typed source programs, an evaluation is always

derivable. Thus, this is not a problem in our restricted setting.

Strictly Capturing Non-strict Closures PEPM ’21, January 18–19, 2021, Virtual, Denmark

Theorem 2.3 (Closure-Conversion Preserves Evaluation).
If Y ⊢ 𝑀 : int, ⟨Y ∥ 𝑀⟩ ⇓V 𝑛 implies ⟨Y ∥ CCV′⟦𝑀⟧⟩ ⇓V′ 𝑛.

3 Non-strict Closure-Conversion
Previously, closure-conversion translated functions of a strict

source language into a closure—data structures containing a

closed function and a representation of its environment—in

a strict target language. Can we do the same thing for non-

strict languages? That is, can we convert a non-strict source

language to a non-strict target language that lacks automatic

closure management at run-time?

To answer these questions, we first need to know how

non-strict data types are evaluated, since closures will be

constructed with them. In strict languages, data are evaluated

before they are considered a value; in contrast, non-strict

data are not evaluated until forced by their context, i.e. until
they are pattern matched

3
. For example, a non-strict existen-

tial package has the following semantics, based on delayed

evaluation rules for data in lazy languages, e.g. Launchbury’s
natural semantics extended with constructors [16]:

⟨Σ ∥ pack𝑀⟩ ⇓N (Σ, pack𝑀) Pack

⟨Σ ∥ 𝑀⟩ ⇓N (Σ′, pack 𝐿) ⟨Σ, 𝑥 ↦→ (Σ′, 𝐿) ∥ 𝑁 ⟩ ⇓N 𝑅

⟨Σ ∥ unpack𝑀 as 𝑥 in 𝑁 ⟩ ⇓N 𝑅
Unpack

To avoid evaluating inside of the data constructor until pat-

tern matching, a non-strict evaluator must return a closure to

capture the environment needed to evaluate it later. But this

gets us nowhere! The point of closure-conversion is to elimi-

nate the need for automatic closure management at run-time

(i.e. in the semantics). Yet, when trying to eliminate auto-

matic closure management, we introduced a new type. . . that

requires automatic closure management at run-time.

Our goal is to simulate the non-strict Pack and Unpack
rules above in the text of the program, so the instructions for

capturing and restoring the environment are in the compile-

time code, not the run-time system. The root of the problem

for non-strict closure-conversion, then, is that before pack
returns, it needs to look up the current definitions of its

free variables in scope, so that these bindings can actually be

captured in the environment value it contains. In otherwords,

pack must be strict—to some degree—in its argument. But

we also must be careful to not introduce too much strictness.

In a non-strict evaluation of example (1),

let 𝑥 = (let 𝑦 = 2 + 1 in _𝑧.𝑦) in (𝑥 3) + (𝑥 4)

we must not evaluate the expression 2 + 1 bound to 𝑦 when

the closure is formed; rather, computation of 𝑦 itself must

still be delayed until its value is forced. Thankfully, this

complication, too, is solved by closure-conversion. In general,

bound, delayed computations, like let𝑦 = 2+1 in . . . might

also refer to other free variables, so the right-hand-sides

3
Non-strict data is closely related to codata types [10], which are defined

entirely by their forcing contexts.

⟨Σ ∥ 𝑛⟩ ⇓N 𝑛
Num

Σ(𝑥) = (Σ′, 𝑀) ⟨Σ′ ∥ 𝑀⟩ ⇓N 𝑅

⟨Σ ∥ 𝑥⟩ ⇓N 𝑅
Var

⟨Σ ∥ _𝑥. 𝑀⟩ ⇓N (Σ, _𝑥 . 𝑀) Lam

⟨Σ ∥ 𝑀⟩ ⇓N (Σ′, _𝑥 . 𝐿) ⟨Σ′, 𝑥 ↦→(Σ, 𝑁) ∥ 𝐿⟩ ⇓N 𝑅

⟨Σ ∥ 𝑀 𝑁 ⟩ ⇓N 𝑅
App

⟨Σ, 𝑥 ↦→ (Σ, 𝑀) ∥ 𝑁 ⟩ ⇓N 𝑅

⟨Σ ∥ let 𝑥 =𝑀 in 𝑁 ⟩ ⇓N 𝑅
Let

Figure 7. Non-strict source semantics

must be closure-converted like functions. As a consequence,

delayed computations bound by let- and _-expressions will

also be converted to values—in the sense of call-by-value—

ensuring that they are not evaluated too early.

In brief, a non-strict closure-conversion must transform

_-expressions, application arguments, and let-bound expres-

sions into strictly-constructed packages of their free variables

and a closed function. Applying such a transformation to

our example program would produce the following output

(to keep the example simple, we did not construct closures

for 𝑥 , 3, and 4):

let 𝑥 = (let 𝑦 = pack ((), _(). 2 + 1)
in pack ((𝑦), _((𝑦), 𝑧) .unpack 𝑦 as (𝑒, 𝑓) in 𝑓 𝑒))

in (unpack𝑥 as (𝑒, 𝑓) in 𝑓 (𝑒, 3))+(unpack𝑥 as (𝑒, 𝑓) in 𝑓 (𝑒, 4))

In addition to the function closure needed in strict closure-

conversion, we have added a closure construction for the

binding of 𝑦. This solution means that every function and

let-expression in the target language will be strict. Thus,

the target language of the non-strict closure-conversion is

indeed that of strict closure-conversion: V ′
.

3.1 Non-strict Source Language: N
The non-strict source languagemakes use of the same expres-

sion syntax and type system as the strict source language.

Operational Semantics. In a non-strict language, all val-

ues are thunk closures which contain the suspended compu-

tation code and the environment it needs to execute. Unlike

our strict source, values stored in the environment are differ-

ent from the results of evaluation in the non-strict source.

𝐶 ∈ Configuration ::= ⟨Σ ∥ 𝑀⟩
Σ ∈ Environment =Variable ⇀ Value

𝑉 ,𝑊 ∈ Value ::= (Σ, 𝑀)
𝑅 ∈ Result ::= 𝑛 | (Σ, _𝑥 . 𝑀)

The evaluation rules are given in Figure 7. The variable

rule unpacks and evaluates the object it looks up in the

environment. The application rule must handle two differ-

ent types of closures: it must unpack the function closure

returned from evaluating the left-hand-side and it must con-

struct a thunk closure for the formal parameter. The Let rule
instead only constructs the closure for the bound expression.

PEPM ’21, January 18–19, 2021, Virtual, Denmark Zachary J. Sullivan, Paul Downen, and Zena M. Ariola

Expression Translation
CCN⟦𝑛⟧ = 𝑛

CCN⟦𝑥⟧ = eval 𝑥
CCN⟦let 𝑥 =𝑀 in 𝑁⟧ = let 𝑥 =pack ((®𝑦), _(®𝑦) .CCN⟦𝑀⟧)

in CCN⟦𝑁⟧
where FV(𝑀) = ®𝑦 = 𝑦0, . . . , 𝑦𝑛

CCN⟦_𝑥. 𝑀⟧ = pack ((®𝑦), _((®𝑦), 𝑥).CCN⟦𝑀⟧)
where FV(_𝑥 .𝑀) = ®𝑦 = 𝑦0, . . . , 𝑦𝑛

CCN⟦𝑀 𝑁⟧ = let 𝑧 = pack ((®𝑦), _(®𝑦).CCN⟦𝑁⟧))
in call (CCN⟦𝑀⟧, 𝑧)
where FV(𝑁) = ®𝑦 = 𝑦0, . . . , 𝑦𝑛

eval𝑀
def

= unpack𝑀 as (𝑦, 𝑓) in 𝑓 𝑦

call(𝑀, 𝑁) def

= unpack𝑀 as (𝑦, 𝑓) in 𝑓 (𝑦, 𝑁)
Type Translations

ResN⟦int⟧ = int
ResN⟦𝜏 → 𝜎⟧ = ∃𝑋 .𝑋 × (𝑋 × ValN⟦𝜏⟧ → ResN⟦𝜎⟧)

ValN⟦𝜏⟧ = ∃𝑋 .𝑋 × (𝑋 → ResN⟦𝜏⟧)
EnvN⟦Y⟧ = Y

EnvN⟦Γ, 𝑥 :𝜏⟧ = EnvN⟦Γ⟧, 𝑥 :ValN⟦𝜏⟧

Figure 8. Non-strict closure-conversion: N → V ′

3.2 Transformation
Non-strict closure-conversion, transforming N intoV ′

, is

presented in Figure 8. Echoes of the source semantics are

seen in the transformation. Variables are converted into code

for unpacking thunk closures as we see in the Var rule. Ap-
plications are converted into code that turns arguments into

thunk closures like the App rule. The non-strict transforma-

tion is careful to distinguish thunk closures from function

closures.Whereas the former contains a closed function from

some environment, the latter contains a closed function that

takes a pair of some environment and a formal parameter.

Extending the strict type translation to a non-strict lan-

guage requires a different translation for values and results.

Intuitively, the three type translations can be thought of

as a translation of expressions that we intend to evaluate

to results (ResN) versus placing them in the environment

(ValN), along with translation of the environment needed for

evaluating an expression (EnvN). The result type translation
of a function has changed from the strict closure-conversion

to reflect that it now accepts only thunks as arguments.

Type Preservation. Like strict closure-conversion, the

non-strict transformation preserves typing derivations.

Theorem 3.1 (Type Preservation). If Γ ⊢ 𝑀 : 𝜏 , then
EnvN⟦Γ⟧ ⊢ CCN⟦𝑀⟧ : ResN⟦𝜏⟧.

Semantic Preservation. Repeating the theme of distin-

guishing values and results, the family of logical relations

from strict closure-conversion can be modified to work for

the non-strict transformation with similar modifications to

MN⟦𝜏⟧
def

= {(𝐶,𝐶 ′) | ∀𝑅. (𝐶 ⇓N 𝑅) =⇒
∃(𝑅, 𝑅′) ∈ RN⟦𝜏⟧. (𝐶 ′ ⇓N′ 𝑅′)}

EN⟦Γ⟧
def

= {(Σ, Σ′) | ∀(𝑥 :𝜏) ∈ Γ.
(Σ(𝑥), Σ′(𝑥)) ∈ VN⟦𝜏⟧}

VN⟦𝜏⟧
def

= {((Σ, 𝑀), pack (𝑉 ′
𝑒 ,𝑉

′
𝑓
))

| (⟨Σ ∥ 𝑀⟩, ⟨Y ∥ 𝑉 ′
𝑓
𝑉 ′
𝑒 ⟩) ∈ MN⟦𝜏⟧}

RN⟦int⟧
def

= {(𝑛, 𝑛) | 𝑛 ∈ Z}
RN⟦𝜏 → 𝜏 ′⟧ def

= {((Σ, _𝑥 . 𝑀), pack (𝑉 ′
𝑒 ,𝑉

′
𝑓
))

| ∀(𝑊,𝑊 ′) ∈ VN⟦𝜏⟧.
(⟨Σ, 𝑥 ↦→𝑊 ∥ 𝑀⟩
, ⟨Y ∥ 𝑉 ′

𝑓
(𝑉 ′

𝑒 ,𝑊
′)⟩) ∈ MN⟦𝜏 ′⟧}

Figure 9. Non-strict closure-conversion logical relations

those of the semantics and type translations. Thus, the non-

strict family of relations in Figure 9 includes a separate rela-

tion for values and results:

MN ∈ Type → P(Config × Config)
EN ∈ TypeEnv → P(Env × Env)
VN ∈ Type → P(Value × Value)
RN ∈ Type → P(Result × Result)

The VV relation has become the result relation RN for

non-strict closure-conversion. The relation for values,VN ,
is new. A source value, which is a thunk closure, is related to

a target package when they form related configurations by

unpacking and applying their respective enclosed environ-

ments. As before, adequacy of this logical relation (whose

proof is shown in Appendix B) implies correct evaluation.

Lemma 3.2 (Adequacy). If Γ ⊢ 𝑀 : 𝜏 and (Σ, Σ′) ∈ EN⟦Γ⟧,
then (⟨Σ ∥ 𝑀⟩, ⟨Σ′ ∥ CCN⟦𝑀⟧⟩) ∈ MN⟦𝜏⟧.

Theorem 3.3 (Closure-Conversion Preserves Evaluation).
If Y ⊢ 𝑀 : int, ⟨Y ∥ 𝑀⟩ ⇓N 𝑛 implies ⟨Y ∥ CCN⟦𝑀⟧⟩ ⇓N′ 𝑛.

4 Lazy Closure-Conversion
When we applied strict closure-conversion to our non-strict

language, we found that closures need to be strict and that

we need to close over arguments of functions. This forced us

to use a strict target language even when closure-converting

non-strict programs. Running an analogous experiment, con-

sider the call-by-need evaluation of the resulting program

from non-strict closure-conversion (again, avoiding the clo-

sures necessary for 𝑥 , 3, and 4) of the program in (1).

let 𝑥 = (let 𝑦 = pack ((), _(). 2 + 1)
in pack ((𝑦), _((𝑦), 𝑧) .unpack 𝑦 as (𝑒, 𝑓) in 𝑓 𝑒))

in (unpack𝑥 as (𝑒, 𝑓) in 𝑓 (𝑒, 3))+(unpack𝑥 as (𝑒, 𝑓) in 𝑓 (𝑒, 4))

Since the transformation replaces every binding with a strict

binding, we are left with a program with only strict bindings.

Thus, the two evaluations of the thunk bound to 𝑦 are no

Strictly Capturing Non-strict Closures PEPM ’21, January 18–19, 2021, Virtual, Denmark

longer shared. A proper lazy closure-conversion should share

computations; that is, thunk closures must be evaluated at

most one time.

An obvious solution is to add a restricted form of mutable

references to the target language and replace thunks after

their evaluation. Instead of closure-converting a function

argument to a thunk, it will be closure-converted into a

pointer to a heap-allocated tagged thunk. We will use the

following shorthand for tagged heap storage:

store𝑀
def

= new (inr𝑀)
At the thunk’s call site, i.e. a variable lookup in the source, we
will generate code that checks the tag to determine whether

to simply return a value or to evaluate the thunk and update

the pointer. This, we capture in a memoization macro:

memo 𝑥
def

= case !𝑥 of
inl 𝑣 → 𝑣

inr 𝑡 → unpack 𝑡 as (𝑦, 𝑧) in
let 𝑣 = 𝑧 𝑦 in
let _ = (𝑥 := inl 𝑣) in 𝑣

In our example, applying these ideas to the thunk created

for 𝑦 yields the following target program:

let 𝑥 = let 𝑦 = store (pack ((), _(). 2 + 1)))
in pack ((𝑦), _((𝑦), 𝑧) .memo 𝑦)

in (unpack𝑥 as (𝑒, 𝑓) in 𝑓 (𝑒, 3))+(unpack𝑥 as (𝑒, 𝑓) in 𝑓 (𝑒, 4))
We arrive at a lazy closure-conversion in modifying the

non-strict transformation by inserting these thunk mutating

macros at the locations where source variable bindings are in-

troduced (i.e. let-bound expressions and function arguments)

and eliminated (i.e. variable lookup).

4.1 Lazy Source Language: L
Operational Semantics. The major difference in the lazy

semantics versus strict and non-strict is the addition of the

heap. This means we must now distinguish results, values,

and answers. Answers are the set of normalized expressions

and results now contain an updated heap and an answer.

Configurations include a heap and an environment. Whereas

heaps hold thunks and answers at specified locations, en-

vironments are only a mapping from variables to locations

into the heap.

𝐶 ∈ Configuration ::= ⟨Φ ∥ Σ ∥ 𝑀⟩
Φ ∈ Heap = Location ⇀ Heap Object
𝑙 ∈ Location
𝑂 ∈ Heap Object ::= (Σ, 𝑀) | 𝐴
Σ ∈ Environment =Variable ⇀ Value
𝑉 ∈ Value = Location
𝐴 ∈ Answer ::= 𝑛 | (Σ, _𝑥 . 𝑀)
𝑅 ∈ Result =Heap × Answer

The big-step evaluation rules are specified in Figure 10.

Just like the other two source languages, the Lam rule must

construct a function closure. Like the non-strict language,

⟨Φ ∥ Σ ∥ 𝑛⟩ ⇓L (Φ, 𝑛) Num
Φ(Σ(𝑥)) = 𝐴

⟨Φ ∥ Σ ∥ 𝑥⟩ ⇓L (Φ, 𝐴) VarAns

Φ(Σ(𝑥)) = (Σ′, 𝑀) ⟨Φ ∥ Σ′ ∥ 𝑀⟩ ⇓L (Φ′, 𝐴)
update(Φ′, Σ(𝑥), 𝐴) = Φ′′

⟨Φ ∥ Σ ∥ 𝑥⟩ ⇓L (Φ′′, 𝐴) VarMemo

⟨Φ ∥ Σ ∥ _𝑥. 𝑀⟩ ⇓L (Φ, (Σ, _𝑥 . 𝑀)) Lam

⟨Φ ∥ Σ ∥ 𝑀⟩ ⇓L (Φ′, (Σ′, _𝑥 . 𝐿))
alloc(Φ′, (Σ, 𝑁)) = (𝑙,Φ′′)
⟨Φ′′ ∥ Σ′, 𝑥 ↦→ 𝑙 ∥ 𝐿⟩ ⇓L 𝑅

⟨Φ ∥ Σ ∥ 𝑀 𝑁 ⟩ ⇓L 𝑅
App

alloc(Φ, (Σ, 𝑀)) = (𝑙,Φ′) ⟨Φ′ ∥ Σ, 𝑥 ↦→ 𝑙 ∥ 𝑁 ⟩ ⇓N 𝑅

⟨Φ ∥ Σ ∥ let 𝑥 =𝑀 in 𝑁 ⟩ ⇓L 𝑅
Let

Heap Semantics
𝑙 ∉ Dom(Φ) Φ′(𝑙) = 𝑀 ∀𝑙 ′ ∈ (Dom(Φ′) − {𝑙}) .Φ(𝑙 ′) = Φ′(𝑙 ′)

alloc(Φ, 𝑀) = (𝑙,Φ′)
𝑙 ∈ Dom(Φ) Φ′(𝑙) = 𝐴 ∀𝑙 ′ ∈ (Dom(Φ′) − {𝑙}) .Φ(𝑙 ′) = Φ′(𝑙 ′)

update(Φ, 𝑙, 𝐴) = Φ′

Figure 10. Lazy source semantics

Δ; Γ ⊢ 𝑀 : 𝜏

Δ; Γ ⊢ inl𝑀 : 𝜏 + 𝜎
Inl

Δ; Γ ⊢ 𝑀 : 𝜎

Δ; Γ ⊢ inr𝑀 : 𝜏 + 𝜎
Inr

Δ; Γ ⊢ 𝑀 : 𝜎𝑙 + 𝜎𝑟
Δ; Γ, 𝑥 :𝜎𝑙 ⊢ 𝑁 : 𝜏 Δ; Γ, 𝑥 :𝜎𝑟 ⊢ 𝐿 : 𝜏

Δ; Γ ⊢ case𝑀 of {inl 𝑥 → 𝑁 ; inr 𝑥 → 𝐿} : 𝜏 CaseSum

Δ; Γ ⊢ 𝑀 : 𝜏

Δ; Γ ⊢ new𝑀 : ref 𝜏
New

Δ; Γ ⊢ 𝑀 : ref 𝜏

Δ; Γ ⊢ !𝑀 : 𝜏
Deref

Δ; Γ ⊢ 𝑀 : ref 𝜏 Δ; Γ ⊢ 𝑁 : 𝜏

Δ; Γ ⊢ 𝑀 := 𝑁 : 1
Mutate

Figure 11. Typing rules forV ′
!
extending V ′

the App rule constructs a thunk closure, but here it is added

to the heap and a pointer to it is passed in the environment.

The differential treatment between closure types is more ob-

vious in a lazy language: function closures are returned from

evaluations, whereas thunk closures are passed as pointers

to the heap where they can be updated.

We model heaps as objects in which we only know how

to allocate, update, and lookup. Since our heaps remain ab-

stract, our heap semantics specifies only the properties that

allocation and update operations must satisfy. Allocation

requires that we are allocating a fresh variable, the new heap

correctly returns the expression being allocated, and every-

thing else in the heap remains unchanged. Update requires

that the variable is already in the heap, that the new heap

correctly returns the value, and that everything else in the

heap remains unchanged.

PEPM ’21, January 18–19, 2021, Virtual, Denmark Zachary J. Sullivan, Paul Downen, and Zena M. Ariola

4.2 Strict Target Language with Mutation: V ′
!

In order to handle the added problem of updating thunks, the

strict target language for lazy closure-conversion extends

V ′
with sums and mutable references.

𝐿,𝑀, 𝑁 ∈ Exp ::= 𝑛 | 𝑥 | _𝑥. 𝑀 | 𝑀 𝑁

| let 𝑥 = 𝑀 in 𝑁

| (𝑀0, . . . , 𝑀𝑛)
| case𝑀 of (𝑥0, . . . , 𝑥𝑛) → 𝑁

| pack𝑀 | unpack𝑀 as 𝑥 in 𝑁

| inl𝑀 | inr𝑀
| case 𝐿 of {inl 𝑥 → 𝑀 ; inr 𝑥 → 𝑁 }

Typing Rules. The typing rules for this target language
are given in Figure 11. They are a direct extension of the rules

for the strict target language V ′
. Heap manipulation in V ′

!

is through reference types, à la SML. This can be seen in the

Mutate rule wherein a reference to an integer, for instance,

is a different type ref int that can only be updated with

another integer. Assignment expressions will return a value

of the empty product type (i.e. 1) which we denote by ().

Operational Semantics. Our strict, mutable target lan-

guage can do away with the distinctions between heap ob-

jects, answers and values that were present in L. Now, both

heaps and environments may contain any value. Results are

pairs of a heap and value.

𝐶 ∈ Configuration ::= ⟨Φ ∥ Σ ∥ 𝑀⟩
Φ ∈ Heap = Location ⇀ Value
𝑙 ∈ Location
Σ ∈ Environment =Variable ⇀ Value
𝑉 ∈ Value ::= 𝑛 | _𝑥. 𝑀 | (𝑉0, . . . ,𝑉𝑛)

| pack 𝑉 | inl 𝑉 | inr 𝑉 | 𝑙
𝑅 ∈ Result =Heap × Value

The semantics is given in Figure 12. Unlike the syntax and

typing rules for V ′
!
, which were a direct extension of the

target languageV ′
, all of the evaluation rules differ because

they must pass the heap around explicitly. For instance, the

product evaluation rule is limited to left-to-right evaluation

of its components. In the non-mutable target language, this

order was irrelevant.

The new mutable references rules make use of the same

heap interface as our lazy semantics. The New rule evalu-

ates its argument to a value, places that value in the heap,

and returns its location in memory. The dereference rule

evaluates its argument to a location and returns the value

at that location. Finally, the mutation rule will evaluate the

left-hand-side to get the location where the right-hand-side’s

value will go. After the update, a mutation will return the

empty product ().

4.3 Transformation
The lazy closure-conversion transformation is found in Fig-

ure 13. Our lazy source language’s different variable lookup

rules are encoded in a single case expression (defined by

memo): either the heap location contains a thunk or a normal

form. The application case is the same as in the non-strict

closure-conversion case, but the thunk is tagged as a thunk

with inr and it is placed in the heap with new instead of in

the local environment. The type translation reflects the heap

allocation with a ref type and the thunk tagging with a sum

type in the ValL⟦𝜏⟧ translation.

Interestingly, the cases for already normalized expressions

(i.e. numbers and manifest functions) are the same for strict,

non-strict, and lazy closure-conversion.

Theorem 4.1 (Type Preservation). If Γ ⊢ 𝑀 : 𝜏 , then
EnvL⟦Γ⟧ ⊢ CCL⟦𝑀⟧ : ResL⟦𝜏⟧.

4.3.1 Semantics Preservation. The technique to reason-

ing about semantics that we used in the strict and non-strict

setting does not easily apply to the lazy one because answers

can depend on mutable objects in the heap. In effect, the use

of a heap dislocates bindings from their static scope. Clo-

sures capture only pointers into the heap, and evaluating an

expression must use the dynamically newest heap, rather

than the purely static bindings that were possible for strict

and non-strict evaluation. For example, consider evaluating

let 𝑥 = 1 + 1

in let 𝑦 = 𝑥 + 2

in 𝑥 + 𝑦
First, thunks for 𝑥 = 1+1 and𝑦 = 𝑥 +2 get added to the heap,
Φ1. Then, the addition 𝑥 + 𝑦 forces 𝑥 , returning the result

2 in an updated heap Φ2 where 𝑥 has been evaluated. Next,

addition forces𝑦 so that 𝑥 +2 is evaluated in the newest heap

Φ2, not the heap Φ1 that was available at its binding site.

In general, function application places a thunk value rep-

resenting the delayed argument in the current heap found

at the time of the call. Later, that thunk may be retrieved

when that argument is forced, and it must be evaluated with

the state of the heap at the time of forcing, not at the time

when it was bound. Therefore, we need to be able to reason

about evaluating arguments not just now—when the binding

is formed—but also later—when the argument is needed.

In order to specify the behavior of evaluation at different

points in time as the dynamic heap changes, we need to en-

hance our logical relations to be indexed by the current state

of the heap. A heap-indexed family of logical relations for

lazy evaluation is given in Figure 14, with these signatures:

ML ∈ Type → P(Config × Config)
RL ∈ Type → Heap × Heap → P(Result × Result)
EL ∈ TypeEnv → Heap × Heap → P(Env × Env)
VL ∈ Type → Heap × Heap → P(Value × Value)
AL ∈ Type → Heap × Heap → P(Ans. × Ans.)

Environments, values, and answers all depend on a heap

by containing variables which map to pointers. Thus, we

augment their relations to depend on a pair of current source

and target heaps to specify their meaning. EL must look up

Strictly Capturing Non-strict Closures PEPM ’21, January 18–19, 2021, Virtual, Denmark

⟨Φ ∥ Σ ∥ 𝑛⟩ ⇓V′
!

(Φ, 𝑛) Num
Σ(𝑥) = 𝑉

⟨Φ ∥ Σ ∥ 𝑥⟩ ⇓V′
!

(Φ,𝑉) Var ⟨Φ ∥ Σ ∥ _𝑥 .𝑀⟩ ⇓V′
!

(Φ, _𝑥 . 𝑀) Lam

⟨Φ ∥ Σ ∥ 𝑀⟩ ⇓V′
!

(Φ′, _𝑥 . 𝐿)
⟨Φ′ ∥ Σ ∥ 𝑁 ⟩ ⇓V′

!

(Φ′′,𝑉) ⟨Φ′′ ∥ Y, 𝑥 ↦→ 𝑉 ∥ 𝐿⟩ ⇓V′
!

𝑅

⟨Φ ∥ Σ ∥ 𝑀 𝑁 ⟩ ⇓V′
!

𝑅
App

⟨Φ ∥ Σ ∥ 𝑀⟩ ⇓V′
!

(Φ′,𝑉)
⟨Φ ∥ Σ, 𝑥 ↦→ 𝑉 ∥ 𝑁 ⟩ ⇓V′

!

𝑅

⟨Φ ∥ Σ ∥ let 𝑥 =𝑀 in 𝑁 ⟩ ⇓V′
!

𝑅
Let

⟨Φ0 ∥ Σ ∥ 𝑀0⟩ ⇓V′
!

(Φ1,𝑉0) · · · ⟨Φ𝑛 ∥ Σ ∥ 𝑀𝑛⟩ ⇓V′
!

(Φ𝑛+1,𝑉𝑛)
⟨Φ0 ∥ Σ ∥ (𝑀0, . . . , 𝑀𝑛)⟩ ⇓V′

!

(Φ𝑛+1, (𝑉0, . . . ,𝑉𝑛))
Prod

⟨Φ ∥ Σ ∥ 𝑀⟩ ⇓V′
!

(Φ′, (𝑉0, . . . ,𝑉𝑛))
⟨Φ ∥ Σ, 𝑥0 ↦→ 𝑉0, . . . , 𝑥𝑛 ↦→ 𝑉𝑛 ∥ 𝑁 ⟩ ⇓V′

!

𝑅

⟨Φ ∥ Σ ∥ case𝑀 of (𝑥0, . . . , 𝑥𝑛) → 𝑁 ⟩ ⇓V′
!

𝑅
CaseProd

⟨Φ ∥ Σ ∥ 𝑀⟩ ⇓V′
!

(Φ′,𝑉)
⟨Φ ∥ Σ ∥ pack𝑀⟩ ⇓V′

!

(Φ′, pack 𝑉) Pack
⟨Φ ∥ Σ ∥ 𝑀⟩ ⇓V′

!

(Φ′,𝑉) ⟨Φ′ ∥ Σ, 𝑥 ↦→ 𝑉 ∥ 𝑁 ⟩ ⇓V′
!

𝑅

⟨Φ ∥ Σ ∥ unpack𝑀 as 𝑥 in 𝑁 ⟩ ⇓V′
!

𝑅
Unpack

⟨Φ ∥ Σ ∥ 𝑀⟩ ⇓V′
!

(Φ′,𝑉)
⟨Φ ∥ Σ ∥ inl𝑀⟩ ⇓V′

!

(Φ′, inl 𝑉) Inl
⟨Φ ∥ Σ ∥ 𝑀⟩ ⇓V′

!

(Φ′,𝑉)
⟨Φ ∥ Σ ∥ inr𝑀⟩ ⇓V′

!

(Φ′, inr 𝑉) Inr

⟨Φ ∥ Σ ∥ 𝑀⟩ ⇓V′
!

(Φ′, inl 𝑉)
⟨Φ′ ∥ Σ, 𝑥 ↦→ 𝑉 ∥ 𝑁 ⟩ ⇓V′

!

𝑅

⟨Φ ∥ Σ ∥ case𝑀 of {inl 𝑥 → 𝑁 ; . . . }⟩ ⇓V′
!

𝑅
CaseInl

⟨Φ ∥ Σ ∥ 𝑀⟩ ⇓V′
!

(Φ′, inr 𝑉)
⟨Φ′ ∥ Σ, 𝑥 ↦→ 𝑉 ∥ 𝑁 ⟩ ⇓V′

!

𝑅

⟨Φ ∥ Σ ∥ case𝑀 of {. . . ; inr 𝑥 → 𝑁 }⟩ ⇓V′
!

𝑅
CaseInr

⟨Φ ∥ Σ ∥ 𝑀⟩ ⇓V′
!

(Φ′,𝑉)
alloc(Φ′, 𝑙,𝑉) = (𝑙,Φ′′)

⟨Φ ∥ Σ ∥ new𝑀⟩ ⇓V′
!

(Φ′′, 𝑙) New

⟨Φ ∥ Σ ∥ 𝑀⟩ ⇓V′
!

(Φ′, 𝑙)
Φ′(𝑙) = 𝑉

⟨Φ ∥ Σ ∥ !𝑀⟩ ⇓V′
!

(Φ′,𝑉)
Deref

⟨Φ ∥ Σ ∥ 𝑀⟩ ⇓V′
!

(Φ′, 𝑙)
⟨Φ′ ∥ Σ ∥ 𝑁 ⟩ ⇓V′

!

(Φ′′,𝑉) update(Φ′′, 𝑙,𝑉) = Φ′′′

⟨Φ ∥ Σ ∥ 𝑀 := 𝑁 ⟩ ⇓V′
!

(Φ′′′, ()) Mutate

Figure 12.V ′
!
: Strict mutable target language semantics

bindings in both the static environment (to get a location)

and then the dynamic heap (to get a value).VL relates heap

objects (closures and answers) that yield the same result

in the current heap—the conversion from heap objects to

computable configurations is given by the operations

configL ∈ Heap × Heap Object → Config
configV′

!

∈ Heap × Heap Object → Config

AL is almost the same as before, except that the function

arguments𝑊 and𝑊 ′
get passed via references to the heap.

(For clarity, we avoided using our black-box heap allocation

in this definition.)

In contrast, configurations and results contain the heaps

that they depend on, and they specify the impact of their

heap as it evolves over time. The logical relationML ensures

that a source-target pair of configurations, ⟨Φ1 ∥ Σ ∥ 𝑀⟩ and
⟨Φ′

1
∥ Σ′ ∥ 𝑀 ′⟩, gives related results when evaluated now in

their current heapsΦ1 andΦ
′
1
. But crucially,ML should hold

in the future as well: evaluation still gives back related results

when Φ1 and Φ′
1
are replaced by any future heaps Φ2 and Φ′

2
.

This extra generality is expressed by quantification over all

(Φ1,Φ
′
1
) ⊑ (Φ2,Φ

′
2
), where the relation ⊑ is meant to denote

that (Φ2,Φ
′
2
) is a pair of related source-target future heaps

that might come from evaluation with (Φ1,Φ
′
1
). The logi-

cal relation RL ensures that a source-target pair of results,

(Φ2, 𝐴) and (Φ′
2
, 𝐴′), contain related answers in their respec-

tive current heapsΦ2 andΦ
′
2
. But in addition,RL⟦𝜏⟧(Φ1,Φ2)

also ensures that the contained heaps Φ2 and Φ′
2
are indeed

possible future heaps of an older Φ1 and Φ2 used to evaluate

the result, as expressed by (Φ1,Φ
′
1
) ⊑ (Φ2,Φ

′
2
).

4.3.2 Future Heaps. Note that while Figure 14 makes use

of the notion of future heaps, written as (Φ1,Φ
′
1
) ⊑ (Φ2,Φ

′
2
),

it does not define the ⊑ relation. We conjecture that this

last missing piece will make it possible to reason about the

adequacy of the logical relation in Figure 14, which implies

correctness of lazy closure-conversion:

Conjecture 4.2 (Adequacy). There is a definition of ⊑ such
that the following holds: If Γ ⊢ 𝑀 : 𝜏 and (Σ, Σ′)∈EL⟦Γ⟧(Φ,Φ′),
then (⟨Φ ∥ Σ ∥ 𝑀⟩, ⟨Φ′ ∥ Σ′ ∥ CCL⟦𝑀⟧⟩) ∈ ML⟦𝜏⟧.

While we leave the definition of ⊑ as an open problem,

we can still specify the essential properties of future heaps

required to prove Conjecture 4.2. Of course, this relation

should be reflexive and transitive, which follows the usual

intuition of “future” states. The most important property is

that the EL ,VL , andAL relations are immortal: all relations
under a particular source-target pair of heaps continue for

all future heaps, and never die.

Property 1 (Immortality). For all (Φ1,Φ
′
1
) ⊑ (Φ2,Φ

′
2
), the

following hold:

1. If (𝐴,𝐴′)∈AL⟦𝜏⟧(Φ1,Φ
′
1
) then (𝐴,𝐴′)∈AL⟦𝜏⟧(Φ2,Φ

′
2
).

2. If (𝑂,𝑂 ′)∈VL⟦𝜏⟧(Φ1,Φ
′
1
) then (𝑂,𝑂 ′)∈VL⟦𝜏⟧(Φ2,Φ

′
2
).

3. If (Σ, Σ′)∈EL⟦Γ⟧(Φ1,Φ
′
1
) then (Σ, Σ′)∈EL⟦Γ⟧(Φ2,Φ

′
2
).

PEPM ’21, January 18–19, 2021, Virtual, Denmark Zachary J. Sullivan, Paul Downen, and Zena M. Ariola

Expression Translation
CCL⟦𝑛⟧ = 𝑛

CCL⟦𝑥⟧ = memo 𝑥
CCL⟦let 𝑥 =𝑀 in 𝑁⟧ = let 𝑥 =

store(pack((®𝑦), _(®𝑦).CCL⟦𝑀⟧))
in CCL⟦𝑁⟧
where FV(𝑀) = ®𝑦 = 𝑦0, . . . , 𝑦𝑛

CCL⟦_𝑥 .𝑀⟧ = pack ((®𝑦), _((®𝑦), 𝑥) .CCL⟦𝑀⟧)
where FV(_𝑥. 𝑀) = ®𝑦 = 𝑦0, . . . , 𝑦𝑛

CCL⟦𝑀 𝑁⟧ = let 𝑥 =

store(pack((®𝑦), _(®𝑦).CCL⟦𝑁⟧))
in call (CCL⟦𝑀⟧, 𝑥)
where FV(𝑁) = ®𝑦 = 𝑦0, . . . , 𝑦𝑛

memo 𝑥
def

= case !𝑥 of
inl 𝑣 → 𝑣

inr 𝑡 →
unpack 𝑡 as (𝑦, 𝑧) in

let 𝑣 = 𝑧 𝑦 in
let _ = (𝑥 := inl 𝑣) in 𝑣

store𝑀
def

= new (inr𝑀)
call (𝑀, 𝑁) def

= unpack𝑀 as (𝑦, 𝑓) in 𝑓 (𝑦, 𝑁)
Type Translations

ResL⟦int⟧ = int
ResL⟦𝜏 → 𝜎⟧ = ∃𝑋 .𝑋 × (𝑋 × ValL⟦𝜏⟧ → ResL⟦𝜎⟧)

ValL⟦𝜏⟧ = ref (ResL⟦𝜏⟧ +(∃𝑋 .𝑋 ×(𝑋 →ResL⟦𝜏⟧)))
EnvL⟦Y⟧ = Y

EnvL⟦Γ, 𝑥 :𝜏⟧ = EnvL⟦Γ⟧, 𝑥 :ValL⟦𝜏⟧

Figure 13. Lazy closure-conversion

Immortality is a form of monotonicity property, the tem-

poral relationship between heaps (as (Φ1,Φ
′
1
) ⊑ (Φ2,Φ

′
2
))

is preserved as a logical relationship between typed cor-

rectness properties (e.g. AL⟦𝜏⟧(Φ1,Φ
′
1
) ⊆ AL⟦𝜏⟧(Φ2,Φ

′
2
)).

Notice that the immortality property for EL implies any

heap object accessible through a variable 𝑥 will remain ac-

cessible so long as 𝑥 is in scope. The immortality property for

VL holds by virtue of its definition in terms ofML , which
already abstracts over future heaps, so long as ⊑ is transi-

tive. Immortality of AL requires something more. Because

AL⟦𝜏 → 𝜏 ′⟧ stores functions arguments on the heap, future

heaps must be preserved under extension.

Property 2 (Extension). If (Φ1,Φ
′
1
) ⊑ (Φ2,Φ

′
2
),

dom(Φ1) ∩ dom(Φ3) = ∅ = dom(Φ2) ∩ dom(Φ3), and
dom(Φ′

1
) ∩ dom(Φ′

3
) = ∅ = dom(Φ′

2
) ∩ dom(Φ′

3
),

then ((Φ1,Φ3), (Φ′
1
,Φ′

3
)) ⊑ ((Φ2,Φ3), (Φ′

2
,Φ′

3
)).

Additionally, when evaluation forces a variable, the result

of that variable gets memoized, which causes an update to

the heap. This, too, must be a possible future heap.

ML⟦𝜏⟧
def

= {(⟨Φ1 ∥ Σ ∥ 𝑀⟩, ⟨Φ′
1
∥ Σ′ ∥ 𝑀 ′⟩)

| ∀(Φ1,Φ
′
1
) ⊑ (Φ2,Φ

′
2
) .

∀𝑅. (⟨Φ2 ∥ Σ ∥ 𝑀⟩ ⇓L 𝑅) =⇒
∃(𝑅, 𝑅′) ∈ RL⟦𝜏⟧(Φ2,Φ

′
2
) .

⟨Φ′
2
∥ Σ′ ∥ 𝑀 ′⟩ ⇓V′

!

𝑅′}

RL⟦𝜏⟧(Φ,Φ′) def

= {((Φ1, 𝐴), (Φ′
1
, 𝐴′))

| (Φ,Φ′) ⊑ (Φ1,Φ
′
1
)

∧ (𝐴,𝐴′) ∈ AL⟦𝜏⟧(Φ1,Φ
′
1
)}

EL⟦Γ⟧(Φ,Φ′) def

= {(Σ, Σ′) | ∀(𝑥 :𝜏) ∈ Γ.
(Φ(Σ(𝑥)),Φ′(Σ′(𝑥)))
∈ VL⟦𝜏⟧(Φ,Φ′)}

VL⟦𝜏⟧(Φ,Φ′) def

= {(𝑂,𝑂 ′)
| (configL (Φ,𝑂), configV′

!

(Φ′,𝑂 ′))
∈ ML⟦𝜏⟧}

AL⟦int⟧(Φ,Φ′) def

= {(𝑛, 𝑛) | 𝑛 ∈ Z}
AL⟦𝜏 → 𝜏 ′⟧(Φ,Φ′) def

= {((Σ, _𝑥 .𝑀), pack(𝑉 ′
𝑒 ,𝑉

′
𝑓
))

| ∀(𝑊,𝑊 ′) ∈ VL⟦𝜏⟧(Φ,Φ′) .
(⟨Φ, 𝑙 ↦→𝑊 ∥ Σ, 𝑥 ↦→ 𝑙 ∥ 𝑀⟩
,⟨Φ′, 𝑙 ′ ↦→𝑊 ′∥𝑥 ↦→ 𝑙 ′∥𝑉 ′

𝑓
(𝑉 ′

𝑒 , 𝑥)⟩)
∈ ML⟦𝜏 ′⟧}

configL (Φ, (Σ, 𝑀)) def

= ⟨Φ ∥ Σ ∥ 𝑀⟩
configL (Φ, (Σ, _𝑥 .𝑀)) def

= ⟨Φ ∥ Σ ∥ _𝑥 .𝑀⟩
configL (Φ, 𝑛) def

= ⟨Φ ∥ Y ∥ 𝑛⟩
configV′

!

(Φ, inl 𝑉) def

= ⟨Φ ∥ Y ∥ 𝑉 ⟩

configV′
!

(Φ, inr(pack(𝑉𝑒 ,𝑉𝑓)))
def

= ⟨Φ ∥ Y ∥ 𝑉𝑓 𝑉𝑒 ⟩

Figure 14. Lazy closure-conversion logical relation

Property 3 (Memoization). If (Σ, Σ′) ∈ EL⟦Γ, 𝑥 :𝜏⟧(Φ1,Φ
′
1
),

configL (Φ1,Φ1 (Σ(𝑥))) ⇓L (Φ2, 𝐴)
configV′

!

(Φ′
1
,Φ′

1
(Σ′(𝑥))) ⇓V′

!

(Φ′
2
, 𝐴′)

update(Φ2, Σ(𝑥), 𝐴)=Φ3, and update(Φ′
2
, Σ′(𝑥), 𝐴′)=Φ′

3
, then

(Φ2,Φ
′
2
) ⊑ (Φ3,Φ3

′)

5 Partial Closure Transformation
Since both strict and non-strict closure-conversion trans-

lates to the same strict target language, non-strict closure-

conversion is essentially equivalent to a thunking transfor-

mation followed by strict closure-conversion. The switch

in evaluation strategy effectively forces closure-conversion

to be delayed until code generation, at the end of the com-

pilation pipeline. Indeed, we see that closure-constructing

is introduced during code generation phase of the Glasgow

Haskell Compiler (GHC) [26]. If we wish to optimize the code

introduced by lazy closure-conversion, then it would be bet-

ter if it could be done in GHC’s lazy core language wherein

we already know how to do many kinds of optimizations.

Strictly Capturing Non-strict Closures PEPM ’21, January 18–19, 2021, Virtual, Denmark

Fortunately, introducing the strict pairs and closed func-

tions needed for closure-conversion into a non-strict or lazy

intermediate language is similar to the problem of adding un-

boxed types to Haskell, which must also be strictly evaluated.

Peyton Jones and Launchbury [25] have already shown how

to perform unboxing selectively during compilation through

the worker/wrapper transformation. Therein, a worker com-

putation on unboxed values is wrapped in a lazy interface

after some strictness analyses which determines when un-

boxing is safe to do preemptively. This technique can apply

to closure-conversion. For example, suppose that we have

the following code that we wish to closure-convert locally:
let 𝑥 = 𝑦 + 1 in 𝑥 + 𝑥

We can introduce a worker $𝑥 that is the strict closure-

converted form and replace 𝑥 with a wrapper that knows

how to evaluate the worker:

let [$𝑥] = pack ((𝑦), _[(𝑦)] . 𝑦 + 1) in
let 𝑥 = (unpack $𝑥 as (𝑒, 𝑓) in 𝑓 [𝑒]) in
𝑥 + 𝑥

The square brackets in let [$𝑥] = 𝑟ℎ𝑠 in𝑏𝑜𝑑𝑦 indicate that a

strict binding, where 𝑟ℎ𝑠 will be evaluated before binding the

value to $𝑥 and evaluating 𝑏𝑜𝑑𝑦. In this instance, strictness

is essential to capture the definition of 𝑦 in the package

before proceeding. The second binding instead creates a

non-strict binding that points to it. Indeed, this technique

works for both non-strict and lazy languages. Under call-by-

name evaluation, this expression will place a closure for the

unevaluated 𝑥 in the environment, which gets recomputed

every time 𝑥 is forced. Under call-by-need evaluation, the

non-strict let will allocate a memoized closure for 𝑥 in the

heap, which is evaluated at most once.

5.1 An IL for Partial Closure-Conversion
Syntax. In order to perform partial closure-conversion

within our non-strict source N , it must be extended with

strict let-expressions, strict closed functions, and strict prod-

ucts and existentials. The different functions have differ-

ent syntax for _-expressions and applications. Like our let-

expressions in the example above, strict functions and appli-

cations are marked with square brackets. The syntax of the

extended language, N ′
, is defined as:

𝐿,𝑀, 𝑁 ∈ Exp ::= 𝑛 | 𝑥 | _𝑥 .𝑀 | 𝑀 𝑁 | let 𝑥 =𝑀 in 𝑁

| _[𝑥] . 𝑀 | 𝑀 [𝑁] | let [𝑥]=𝑀 in 𝑁

| (𝑀0, . . . , 𝑀𝑛)
| case 𝑥 of (𝑥0, . . . , 𝑥𝑛) → 𝑁

| pack𝑀 | unpack𝑀 as 𝑥 in 𝑁

Type System. The main difference with the type system

of Figure 1 is the presence of two different function types:

The normal arrow (→) denotes a lexically scoped non-strict

function and the arrow (→++) denotes a closed strict function.
Figure 15 just shows the rules for these functions and their

applications. Application typing requires that the correct

kind of function is being applied.

𝜖 ;𝑥 :𝜏 ⊢ 𝑀 : 𝜎

Δ; Γ ⊢ _[𝑥] . 𝑀 : 𝜏 →++ 𝜎
Closed SLam

Δ; Γ ⊢ 𝑀 : 𝜏 →++ 𝜎 Δ; Γ ⊢ 𝑁 : 𝜏

Δ; Γ ⊢ 𝑀 [𝑁] : 𝜎 Closed SApp

Figure 15. Strict and non-strict function types in N ′

Σ(𝑥) = 𝑆

⟨Σ ∥ 𝑥⟩ ⇓N′ 𝑆
SVar ⟨Σ ∥ _[𝑥] . 𝑀⟩ ⇓N′ _[𝑥] . 𝑀 SLam

⟨Σ ∥ 𝑀⟩ ⇓N′ _[𝑥] . 𝐿
⟨Σ ∥ 𝑁 ⟩ ⇓N′ 𝑆 ⟨Y, 𝑥 ↦→ 𝑆 ∥ 𝐿⟩ ⇓N′ 𝑅

⟨Σ ∥ 𝑀 [𝑁]⟩ ⇓N′ 𝑅
SApp

Figure 16. Evaluation rules for strict functions in N ′

(WWfun) _𝑥. 𝑀 −→ let [$𝑓] = pack((𝑦0, . . . , 𝑦𝑛),
_[((𝑦0, . . . , 𝑦𝑛), 𝑥)] . 𝑀)

in _𝑥. unpack $𝑓 as (𝑒, 𝑓) in
𝑓 [(𝑒, 𝑥)]

where FV(_𝑥 .𝑀) = 𝑦0, . . . , 𝑦𝑛
(WWarg) 𝑀 𝑁 −→ let [$𝑥] = pack((𝑦0, . . . , 𝑦𝑛),

_[(𝑦0, . . . , 𝑦𝑛)] . 𝑁)
in𝑀 (unpack $𝑥 as (𝑥,𝑦) in 𝑦 [𝑥])
where FV(𝑁) = 𝑦0, . . . , 𝑦𝑛

Figure 17. Worker/Wrapper non-strict closure-conversion

Operational Semantics. Like the types and syntax, the

sets for values and results for partial closure-conversion are

the combination of the non-strict source and the strict target

sets for values and results.

𝐶 ∈ Config ::= ⟨Σ ∥ 𝑀⟩
Σ ∈ Environment =Variable ⇀ Value

𝑉 ,𝑊 ∈ Value ::= 𝑆 | 𝑃
𝑆 ∈ Strict Val ::= 𝑛 | _[𝑥] . 𝑀 | (𝑆0, . . . , 𝑆𝑛)

| pack 𝑆
𝑃 ∈ NonStrict Val ::= (Σ, 𝑀)
𝑅 ∈ Result ::= 𝑆 | (Σ, _𝑥 . 𝑀)

The operational semantics for N ′
is a combination of strict

and non-strict evaluation. We extend the semantics given in

Figure 7 with the strict operational rules for pairs, packages

and let-expressions of the form let [𝑥]=𝑀 in 𝑁 (as given

by the operational rules in Figure 4). Also strict functions

and their applications follow a strict evaluation order. For

clarity, we give the rules in Figure 16.

5.2 Partial Transformation
Since the transformation is local, we can specify it with two

rewriting rules (Figure 17): one to add function closures and

one to add thunk closures.

PEPM ’21, January 18–19, 2021, Virtual, Denmark Zachary J. Sullivan, Paul Downen, and Zena M. Ariola

Type Preservation. By inspecting which rule is applied,

we can show that the worker/wrapper transformation pre-

serves types. And unlike the total transformation, we do not

need to specify a type translation. The WWfun rule intro-

duces a strict binding of type ResN⟦𝜏 → 𝜎⟧ as a worker and

then eliminates it in the wrapper, yielding the same output

type as the input. The situation is similar forWWarg. If we
letWW stand for both rules, we have:

Theorem 5.1 (Type Preservation). If Γ ⊢ 𝑀 : 𝜏 andWW ⊢
𝑀 −→ 𝑀 ′, then Γ ⊢ 𝑀 ′

: 𝜏 .

6 Related Work
Lambda-Lifting. The approach to handling free vari-

ables found in early compilers for lazy languages is lambda-
lifting [4, 7, 12, 24]. Instead of capturing environments with

products as in lazy closure-conversion, lambda-lifting 𝛽-

expands out all of the free variables of functions leaving

a partially-applied closed function in its place. Once in this

form, the program can be executed on the G-machine [13].

Closure-conversion can be seen as taking lambda-lifting a

step further by choosing a more concrete representation, i.e.
products, for partially-applied closed functions.

Correctness of Closure-Conversion. Our work follows

closely the approach of Minamide et al. [19] who show the

use of existential types for strict closure-conversion type

preservation and prove correctness with a family of type

indexed logical relations. Our presentation differs in that our

semantics is defined for pairs of environments and expres-

sions, which must be carried through to our definitions of

logical relations. Since the work of Minamide et al., many

notable theorems have been added to our understanding of

call-by-value closure-conversion. These include the preser-

vation of observational equivalence [2] and space safety [23].

Reasoning about Heaps. A common solution to reason-

ing about heaps is to use Kripke-esque or possible worlds

approaches to logical relations [1, 11, 27], wherein the worlds

are some notion of heap or store. Notably, Ahmed’s disser-

tation [1] develops a logical relation specifically for reason-

ing about call-by-value programs with a mutable store. Her

model fits the property of call-by-need that a value stored in

the heap at one time is not necessarily the same as the one ac-

cessed later. However, her language differs from call-by-need

in non-trivial ways. Firstly, a language with mutable refer-

ences allows one to create cycles in the heap (the expression

stored at 𝑟 contains a reference to 𝑟):

let 𝑟 = ref (_𝑥 . 𝑥) in
let 𝑓 = _𝑥. !𝑟 𝑥 in
𝑟 := 𝑓 ; !𝑟 42

Though cycles in the heap are possible in any language with

general recursion, we study the simpler simply-typed call-by-

need language which cannot create them. The cycles forced

Ahmed to use a powerful technique known as step-indexing

to give well-founded logical relations for her language. A

second difference with this work is that the call-by-need

mutable store is fundamentally different from that of a call-

by-value language with mutable references. In the latter, the

program itself manages the allocation and mutation of the

values in the store, whereas in call-by-need all updates to

the store are governed by the semantics of the language.

Reasoning about Call-by-Need. Recent work by Dow-

nen et al. [9] presents models of call-by-need that may be

suitable for our purposes. However, their language seman-

tics differs from ours in several ways: they reason about a

reduction theory, they do not consider an explicit, separate

heap and bound variables are maintained by the structure

of the coterm or context. An explicit heap model exists for

call-by-need classical realizability [20], but it cannot reason

about updates to the heap. Both of these approaches are

analogous to an ordered heap model wherein looking up

variables in the heap allows us to split it into two. As we are

focused on lazy languages for compilation and such a model

does not match that of C or common garbage collectors, it is

not entirely applicable. Fortunately, Mizuno and Sumii [21]

define a notion of accessibility for explicit, unordered heaps

for Launchbury’s lazy semantics. Though their relation and

semantics do not take the exact same form as ours, it appears

as a promising fit for Conjecture 4.2.

7 Conclusion
Here we have shown how closure-conversion is not just

for strict languages; it applies to non-strict ones, too. Our

main insight is that the creation of closures must be done

eagerly, to correctly capture the static environment, even for

non-strict languages. Yet, a mixture of strict and non-strict

functions allows us to locally closure-convert only parts of a

program, instead of requiring a global transformation. We

proved correctness of closure-conversion for call-by-name

languages, and illustrated a heap-indexed logical relation for

reasoning about correctness of call-by-need closure conver-

sion. As future work, we intend to further develop the use of

partial closure-conversion for optimization in the intermedi-

ate language of compilers for call-by-need languages.We also

plan to elaborate the heap-based techniques for reasoning

about effectful memoization of purely functional programs,

which could be applicable to fully proving correctness of

call-by-need closure conversion, as well as other program

transformations that interact with memoization.

Acknowledgments
We thank Simon Peyton Jones and Philip Johnson-Freyd for

their discussions and comments on this topic. Additionally,

we would like to thank Eijiro Sumii and the anonymous

reviewers for their comments on our early drafts. This work

is supported by the National Science Foundation under Grant

No. 1719158.

Strictly Capturing Non-strict Closures PEPM ’21, January 18–19, 2021, Virtual, Denmark

A Adequacy of Strict Closure-Conversion
Lemma A.1 (Weakening).
If ⟨Σ∥𝑀⟩⇓V′𝑅, then ⟨Σ′, Σ∥𝑀⟩⇓V′𝑅.

Proof. By induction on the derivation of ⟨Σ ∥ 𝑀⟩ ⇓V′ 𝑅. □

Lemma A.2 (Strengthening). If ⟨Σ, Σ′ ∥ 𝑀⟩ ⇓V′ 𝑅 and
FV(𝑀) ∩ dom(Σ′) = ∅, then ⟨Σ ∥ 𝑀⟩ ⇓V′ 𝑅.

Proof. By induction on the derivation of ⟨Σ, Σ′ ∥ 𝑀⟩ ⇓V′

𝑅. □

Lemma 2.2 (Adequacy). If Γ ⊢𝑀 :𝜏 and (Σ, Σ′) ∈ EV⟦Γ⟧,
then (⟨Σ ∥ 𝑀⟩, ⟨Σ′ ∥ CCV⟦𝑀⟧⟩) ∈ MV⟦𝜏⟧.

Proof. By induction on the typing derivation of Γ ⊢ 𝑀 : 𝜏 ,

for a generic (Σ, Σ′) ∈ EV⟦Γ⟧:
Case (Num) Γ ⊢ 𝑛 : int.

So𝑀 = 𝑛, CCV⟦𝑛⟧ = 𝑛, and we must show that

(⟨Σ ∥ 𝑛⟩, ⟨Σ′ ∥ 𝑛⟩) ∈ MV⟦int⟧.
The only evaluations are ⟨Σ ∥ 𝑛⟩ ⇓V 𝑛 and ⟨Σ′ ∥
𝑛⟩ ⇓V′ 𝑛.

We have (𝑛, 𝑛) ∈ VV⟦int⟧ by definition ofVV⟦int⟧.
Therefore, (⟨Σ ∥ 𝑛⟩, ⟨Σ′ ∥ 𝑛⟩) ∈ MV⟦int⟧.

Case (Var) Γ ⊢ 𝑥 : 𝜏 because (𝑥 : 𝜏) ∈ Γ.
So𝑀 = 𝑥 , CCV⟦𝑥⟧ = 𝑥 , and we must show that

(⟨Σ ∥ 𝑥⟩, ⟨Σ′ ∥ 𝑥⟩) ∈ MV⟦𝜏⟧.
The only evaluations are ⟨Σ ∥ 𝑥⟩ ⇓V Σ(𝑥) and
⟨Σ′ ∥ 𝑥⟩ ⇓V′ Σ′(𝑥).
From the assumptions (Σ, Σ′) ∈ EV⟦Γ⟧ and (𝑥 : 𝜏) ∈
Γ, we know (Σ(𝑥), Σ′(𝑥)) ∈ VV⟦𝜏⟧ by definition of

EV⟦Γ⟧.
Therefore, (⟨Σ ∥ 𝑥⟩, ⟨Σ′ ∥ 𝑥⟩) ∈ MV⟦𝜏⟧ by the

definition of MV .

Case (Lam) Γ ⊢ _𝑥.𝑁 : 𝜏1 → 𝜏2 because Γ, 𝑥 : 𝜏1 ⊢ 𝑁 : 𝜏2.

So 𝜏 = 𝜏1 → 𝜏2,𝑀 = _𝑥 .𝑁 , and

CCV⟦_𝑥.𝑁⟧ = pack(𝑉 ′
𝑒 ,𝑉

′
𝑓
)

𝑉 ′
𝑒 = (𝑦0, . . . , 𝑦𝑛)

𝑉 ′
𝑓
= _((𝑦0 . . . 𝑦𝑛), 𝑥).CCV⟦𝑁⟧)

where FV(_𝑥 . 𝑁) = 𝑦0, . . . , 𝑦𝑛 . We must show that

(⟨Σ ∥ _𝑥.𝑁 ⟩, ⟨Σ′ ∥ CCV⟦_𝑥.𝑁⟧⟩) ∈ MV⟦𝜏1 → 𝜏2⟧
The unique evaluations are ⟨Σ ∥ _𝑥.𝑁 ⟩ ⇓V (Σ, _𝑥 .𝑁)
and

⟨Σ′ ∥ CCV⟦_𝑥 .𝑁⟧⟩ ⇓V′ CCV⟦_𝑥 .𝑁⟧[Σ′].
It suffices to show that ((Σ, _𝑥 .𝑁),CCV⟦_𝑥.𝑁⟧[Σ′]) ∈
VV⟦𝜏1 → 𝜏2⟧.
Suppose an arbitrary (𝑊,𝑊 ′) ∈ VV⟦𝜏⟧, and note

that ((Σ, 𝑥 ↦→ 𝑊), (Σ′, 𝑥 ↦→ 𝑊 ′)) ∈ EV⟦Γ, 𝑥 : 𝜏1⟧
by definition of EV and the assumption (Σ, Σ′) ∈
EV⟦Γ⟧.
From the inductive hypothesis on Γ, 𝑥 : 𝜏1 ⊢ 𝑁 :

𝜏2, we know (⟨Σ, 𝑥 ↦→ 𝑊 ∥ 𝑁 ⟩, ⟨Σ′, 𝑥 ↦→ 𝑊 ′ ∥
CCV⟦𝑁⟧⟩) ∈ MV⟦𝜏2⟧.

Assuming ⟨Σ, 𝑥 ↦→ 𝑊 ∥ 𝑁 ⟩ ⇓V 𝑅, there must be a

(𝑅, 𝑅′) ∈ VV⟦𝜏2⟧ such that

⟨Σ′, 𝑥 ↦→𝑊 ′ ∥ CCV⟦𝑁⟧⟩ ⇓V′ 𝑅′
by the definition

ofMV .

Expanding, ⟨Y ∥ 𝑉 ′
𝑓
((Σ′(𝑦0), . . . , Σ′(𝑦𝑛)),𝑊 ′)⟩ ⇓V′

𝑅′
as well by strengthening (Lemma A.2) the evalua-

tion

⟨Σ′, 𝑥 ↦→𝑊 ′ ∥ CCV⟦𝑁⟧⟩ ⇓V′ 𝑅′
.

Therefore, ((Σ, _𝑥 .𝑁),CCV⟦_𝑥 .𝑁⟧[Σ′]) is in the re-

lation VV⟦𝜏1 →𝜏2⟧ by definition of VV , and thus

(⟨Σ ∥ _𝑥.𝑁 ⟩, ⟨Σ′ ∥ CCV⟦_𝑥.𝑁⟧⟩) ∈ MV⟦𝜏1 →
𝜏2⟧.

Case (App) Γ ⊢ 𝑁 𝑂 : 𝜏 because Γ ⊢ 𝑁 : 𝜏 ′ → 𝜏 and

Γ ⊢ 𝑂 : 𝜏 ′.
So𝑀 = 𝑁 𝑂 ,

CCV⟦𝑁 𝑂⟧ = call(CCV⟦𝑁⟧,CCV⟦𝑂⟧), and we

must show that (⟨Σ ∥ 𝑁 𝑂⟩, ⟨Σ′ ∥ CCV⟦𝑁 𝑂⟧⟩) ∈
MV⟦𝜏⟧.
Suppose that ⟨Σ ∥ 𝑁 𝑂⟩ ⇓V 𝑅. The conclusion of that

derivation must be an instance of App by inversion,

which gives us

1. ⟨Σ ∥ 𝑁 ⟩ ⇓V (Σ1, _𝑥 .𝐿)
2. ⟨Σ ∥ 𝑂⟩ ⇓V 𝑊

3. ⟨Σ1, 𝑥 ↦→𝑊 ∥ 𝐿⟩ ⇓V 𝑅

From the first inductive hypothesis, we know

(⟨Σ ∥ 𝑁 ⟩, ⟨Σ′ ∥ CCV⟦𝑁⟧⟩) ∈ MV⟦𝜏 ′→𝜏⟧.
It follows that there is a

((Σ1, _𝑥 .𝐿), pack(𝑉 ′
𝑒 ,𝑉

′
𝑓
)) ∈ VV⟦𝜏 ′→𝜏⟧ such that

⟨Σ′∥CCV⟦𝑁⟧⟩ ⇓V′ pack(𝑉 ′
𝑒 ,𝑉

′
𝑓
) by definition of

MV .

From the second inductive hypothesis, we know

(⟨Σ ∥ 𝑂⟩, ⟨Σ′ ∥ CCV⟦𝑂⟧⟩) ∈ MV⟦𝜏 ′⟧. Likewise,
it follows that there is a ⟨Σ′ ∥ CCV⟦𝑂⟧⟩ ⇓V′ 𝑊 ′

such that (𝑊,𝑊 ′) ∈ VV⟦𝜏 ′⟧.
We also have (⟨Σ, 𝑥 ↦→𝑊 ∥ 𝐿⟩, ⟨Y ∥ 𝑉 ′

𝑓
(𝑉 ′

𝑒 ,𝑊
′)⟩) ∈

MV⟦𝜏⟧ , from the definition of

((Σ1, _𝑥 .𝐿), pack(𝑉 ′
𝑒 ,𝑉

′
𝑓
)) ∈ VV⟦𝜏 ′ → 𝜏⟧. It fol-

lows that there is a (𝑅, 𝑅′) ∈ VV⟦𝜏⟧ such that

⟨Y ∥ 𝑉 ′
𝑓
(𝑉 ′

𝑒 ,𝑊
′)⟩ ⇓V′ 𝑅′

.

Expanding, we get that

⟨Σ′ ∥ call(CCV⟦𝑁⟧,CCV⟦𝑂⟧)⟩ ⇓V′ 𝑅′
as well

by weakening (Lemma A.1) ⟨Y ∥ 𝑉 ′
𝑓
(𝑉 ′

𝑒 ,𝑊
′)⟩ ⇓V′ 𝑅′

to ⟨Σ′ ∥ 𝑉 ′
𝑓
(𝑉 ′

𝑒 ,𝑊
′)⟩ ⇓V′ 𝑅′

.

Therefore, (⟨Σ ∥ 𝑁 𝑂⟩, ⟨Σ′ ∥ CCV⟦𝑁 𝑂⟧⟩) is in the

relationMV⟦𝜏⟧ by definition of MV .

Case (Let) Γ ⊢ let 𝑥 =𝑁 in 𝑂 : 𝜏 because Γ ⊢ 𝑁 : 𝜏 ′ and
Γ, 𝑥 : 𝜏 ′ ⊢ 𝑂 : 𝜏 .

So𝑀 = let 𝑥 =𝑁 in 𝑂 and

CCV⟦let 𝑥 =𝑁 in 𝑂⟧ = let 𝑥 = CCV⟦𝑁⟧
in CCV⟦𝑂⟧

PEPM ’21, January 18–19, 2021, Virtual, Denmark Zachary J. Sullivan, Paul Downen, and Zena M. Ariola

We must show that

(⟨Σ ∥ let 𝑥 =𝑁 in 𝑂⟩
, ⟨Σ′ ∥ CCV⟦let 𝑥 =𝑁 in 𝑂⟧⟩)

∈ MV⟦𝜏⟧
Suppose that ⟨Σ ∥ let 𝑥 =𝑁 in 𝑂⟩ ⇓V 𝑅. The con-

clusion of that derivation must be an instance of Let
by inversion, which gives us

1. ⟨Σ ∥ 𝑁 ⟩ ⇓V 𝑊

2. ⟨Σ, 𝑥 ↦→𝑊 ∥ 𝑂⟩ ⇓V 𝑅

From the first inductive hypothesis, we know

(⟨Σ ∥ 𝑁 ⟩, ⟨Σ′ ∥ CCV⟦𝑁⟧⟩) ∈ MV⟦𝜏 ′⟧. It follows
that there is a ⟨Σ′ ∥ CCV⟦𝑁⟧⟩ ⇓V 𝑊 ′

such that

(𝑊,𝑊 ′) ∈ VV⟦𝜏 ′⟧. We also know that

(Σ, 𝑥 ↦→𝑊, Σ, 𝑥 ↦→𝑊 ′) ∈ EV⟦Γ, 𝑥 :𝜏 ′⟧ by the defi-

nition of EV and the assumption (Σ, Σ) ∈ EV⟦Γ⟧.
From the second inductive hypothesis, we know that

(⟨Σ, 𝑥 ↦→𝑊 ∥ 𝑂⟩, ⟨Σ′, 𝑥 ↦→𝑊 ′ ∥ CCV⟦𝑂⟧⟩) is in
MV⟦𝜏 ′⟧. It follows that there is a ⟨Σ′, 𝑥 ↦→𝑊 ′ ∥
CCV⟦𝑂⟧⟩ ⇓V′ 𝑅′

such that (𝑅, 𝑅′) ∈ VV⟦𝜏⟧.
Therefore,

(⟨Σ ∥ let 𝑥 =𝑁 in 𝑂⟩
, ⟨Σ′ ∥ CCV⟦let 𝑥 =𝑁 in 𝑂⟧⟩)

∈ MV⟦𝜏⟧ □

B Adequacy of Non-strict
Closure-Conversion

Lemma 3.2 (Adequacy). If Γ ⊢ 𝑀 : 𝜏 and (Σ, Σ′) ∈ EN⟦Γ⟧,
then (⟨Σ ∥ 𝑀⟩, ⟨Σ′ ∥ CCN⟦𝑀⟧⟩) ∈ MN⟦𝜏⟧.

Proof. By induction on the typing derivation of Γ ⊢ 𝑀 : 𝜏 ,

for a generic (Σ, Σ′) ∈ EN⟦Γ⟧. The cases for Num and Lam
are analogous to Lemma 2.2. The remaining two cases are:

Case (Var) Γ ⊢ 𝑥 : 𝜏 because (𝑥 : 𝜏) ∈ Γ.
So𝑀 = 𝑥 , CCN⟦𝑥⟧ = eval 𝑥 , and we must show that

(⟨Σ ∥ 𝑥⟩, ⟨Σ′ ∥ CCN⟦𝑥⟧⟩) ∈ MN⟦𝜏⟧.
From the assumptions (Σ, Σ′) ∈ EN⟦Γ⟧ and (𝑥 : 𝜏) ∈
Γ, we know (Σ(𝑥), Σ′(𝑥)) ∈ VN⟦𝜏⟧ by definition of

EN⟦Γ⟧. Furthermore, the definition of VN forces

Σ(𝑥) = (Σ1, 𝑀) and Σ′(𝑥) = pack(𝑉 ′
𝑒 ,𝑉

′
𝑓
), such that

(⟨Σ1 ∥ 𝑀⟩, ⟨Y ∥ 𝑉 ′
𝑒 𝑉

′
𝑓
⟩) ∈ MN⟦𝜏⟧.

Assume the source evaluation ⟨Σ ∥ 𝑥⟩ ⇓N 𝑅. By

inversion on this derivation, ⟨Σ1 ∥ 𝑀⟩ ⇓N 𝑅.

We are guaranteed related results (𝑅, 𝑅′) ∈ RN⟦𝜏⟧
such that ⟨Y ∥ 𝑉 ′

𝑓
𝑉 ′
𝑒 ⟩ ⇓V′ 𝑅′

from the definition of

(⟨Σ1 ∥ 𝑀⟩, ⟨Y ∥ 𝑉 ′
𝑓
𝑉 ′
𝑒 ⟩) ∈ MN⟦𝜏⟧.

Expanding, we have ⟨Σ′ ∥ CCN⟦𝑥⟧⟩ ⇓V′ 𝑅′
from the

above evaluation.

Therefore, (⟨Σ ∥ 𝑥⟩, ⟨Σ′ ∥ CCN⟦𝑥⟧⟩) ∈ MN⟦𝜏⟧ by

the definition of MN .
Case (App) Γ ⊢ 𝑁 𝑂 : 𝜏 because Γ ⊢ 𝑁 : 𝜏 ′ → 𝜏 and

Γ ⊢ 𝑂 : 𝜏 ′.

So𝑀 = 𝑁 𝑂 , FV(𝑂) = {𝑦0, . . . , 𝑦𝑛},

CCN⟦𝑁 𝑂⟧ = let 𝑥 =𝑊 ′

in call(CCN⟦𝑁⟧, 𝑥)
𝑊 ′ = pack(𝑊 ′

𝑒 ,𝑊
′
𝑓
)

𝑊 ′
𝑓
= _(𝑦0, . . . , 𝑦𝑛).CCN⟦𝑂⟧

𝑊 ′
𝑒 = (Σ′(𝑦0), . . . , Σ′(𝑦𝑛))

and we must show that MN⟦𝜏⟧ contains (⟨Σ ∥
𝑁 𝑂⟩, ⟨Σ′ ∥ CCN⟦𝑁 𝑂⟧⟩).
Suppose that ⟨Σ ∥ 𝑁 𝑂⟩ ⇓N 𝑅. The conclusion of that

derivation must be an instance of App by inversion,

which gives us

1. ⟨Σ ∥ 𝑁 ⟩ ⇓N (Σ1, _𝑥 .𝐿)
2. ⟨Σ1, 𝑥 ↦→ (Σ,𝑂) ∥ 𝐿⟩ ⇓N 𝑅

From the first inductive hypothesis, we know

(⟨Σ ∥ 𝑁 ⟩, ⟨Σ′ ∥ CCN⟦𝑁⟧⟩) ∈ MN⟦𝜏 ′→𝜏⟧. It fol-
lows that there is a ((Σ1, _𝑥 .𝐿), pack(𝑉 ′

𝑒 ,𝑉
′
𝑓
)) in the

relation RN⟦𝜏 ′→𝜏⟧ such that ⟨Σ′ ∥ CCN⟦𝑁⟧⟩ ⇓V′

pack(𝑉 ′
𝑒 ,𝑉

′
𝑓
) by definition of MN .

From the second inductive hypothesis, we know

(⟨Σ ∥ 𝑂⟩, ⟨Σ′ ∥ CCN⟦𝑂⟧⟩) ∈ MN⟦𝜏 ′⟧.
Note that ⟨Y ∥𝑊 ′

𝑓
𝑊 ′

𝑒 ⟩ ⇓V′ 𝑅′
1
if ⟨Σ′ ∥ CCN⟦𝑂⟧⟩ ⇓V′

𝑅′
1
by strengthening (Lemma A.2).

It follows that (⟨Σ ∥ 𝑁 ⟩, ⟨Y ∥𝑊 ′
𝑓
𝑊 ′

𝑒 ⟩) ∈ MN⟦𝜏⟧ and
so ((Σ,𝑂),𝑊 ′) ∈ VN⟦𝜏 ′⟧ by definitions ofMN and

VN .
From ((Σ1, _𝑥 .𝐿), pack(𝑉 ′

𝑒 ,𝑉
′
𝑓
)) ∈ RN⟦𝜏 ′ → 𝜏⟧ and

((Σ,𝑂),𝑊 ′) ∈ VN⟦𝜏 ′⟧, we know

(⟨Σ1, 𝑥 ↦→ (Σ,𝑂) ∥ 𝐿⟩, ⟨Y ∥ 𝑉 ′
𝑓
(𝑉 ′

𝑒 ,𝑊
′)⟩) ∈ MN⟦𝜏⟧

This gives (𝑅, 𝑅′) ∈ RN⟦𝜏⟧ such that

⟨Y ∥ 𝑉 ′
𝑓
(𝑉 ′

𝑒 ,𝑊
′)⟩) ⇓V′ 𝑅′

; and likewise, we know

from the weakening lemma (Lemma A.1) that ⟨Σ′ ∥
𝑉 ′
𝑓
(𝑉 ′

𝑒 ,𝑊
′)⟩) ⇓V′ 𝑅′

.

Expanding ⟨Σ′ ∥ 𝑉 ′
𝑓
(𝑉 ′

𝑒 ,𝑊
′)⟩) ⇓V′ 𝑅′

, we have

⟨Σ′ ∥ CCN⟦𝑁 𝑂⟧⟩) ⇓V′ 𝑅′
.

Therefore, (⟨Σ ∥ 𝑁 𝑂⟩, ⟨Σ′ ∥ CCN⟦𝑁 𝑂⟧⟩) is in

MN⟦𝜏⟧ by definition of MN .
Case (Let) Γ ⊢ let 𝑥 =𝑁 in 𝑂 : 𝜏 because Γ ⊢ 𝑁 : 𝜏 ′ and

Γ, 𝑥 : 𝜏 ′ ⊢ 𝑂 : 𝜏 .

So𝑀 = let 𝑥 =𝑁 in 𝑂 , FV(𝑁) = {𝑦0, . . . , 𝑦𝑛},and

CCV⟦let 𝑥 =𝑁 in 𝑂⟧ = let 𝑥 =𝑊 ′

in CCN⟦𝑂⟧
𝑊 ′ = pack(𝑊 ′

𝑒 ,𝑊
′
𝑓
)

𝑊 ′
𝑓
= _(𝑦0, . . . , 𝑦𝑛).CCN⟦𝑁⟧

𝑊 ′
𝑒 = (Σ′(𝑦0), . . . , Σ′(𝑦𝑛))

Strictly Capturing Non-strict Closures PEPM ’21, January 18–19, 2021, Virtual, Denmark

We must show that

(⟨Σ ∥ let 𝑥 =𝑁 in 𝑂⟩
, ⟨Σ′ ∥ CCN⟦let 𝑥 =𝑁 in 𝑂⟧⟩)

∈ MN⟦𝜏⟧

Suppose that ⟨Σ ∥ let 𝑥 =𝑁 in 𝑂⟩ ⇓N 𝑅. The conclu-

sion of that derivation must be an instance of Let by
inversion, which gives us ⟨Σ, 𝑥 ↦→ (Σ, 𝑁) ∥ 𝑂⟩ ⇓N 𝑅

From the first inductive hypothesis, we know

(⟨Σ ∥ 𝑁 ⟩, ⟨Σ′ ∥ CCN⟦𝑁⟧⟩) ∈ MN⟦𝜏 ′⟧. From the

definition ofMN , it follows that ⟨Σ′ ∥ CCN⟦𝑁⟧⟩ ⇓N
𝑅′

such that (𝑅, 𝑅′) ∈ RN⟦𝜏⟧.
Note that ⟨Y ∥𝑊 ′

𝑓
𝑊 ′

𝑒 ⟩ ⇓N 𝑅′
as well by strengthen-

ing (Lemma A.2) ⟨Σ′ ∥ CCN⟦𝑁⟧⟩ ⇓N 𝑅′
. From this

and the definition ofVN , it follows that ((Σ, 𝑁),𝑊 ′) ∈
VN⟦𝜏 ′⟧. Thus, (Σ, 𝑥 ↦→ (Σ, 𝑁), Σ, 𝑥 ↦→𝑊 ′) is in the

relation EN⟦Γ, 𝑥 :𝜏 ′⟧ by the definition of EN and the

assumption (Σ, Σ) ∈ EN⟦Γ⟧.
From the second inductive hypothesis, we know that

(⟨Σ, 𝑥 ↦→ (Σ, 𝑁) ∥ 𝑂⟩, ⟨Σ′, 𝑥 ↦→𝑊 ′ ∥ CCN⟦𝑂⟧⟩) ∈
MV⟦𝜏 ′⟧. It follows that there is a
⟨Σ′, 𝑥 ↦→𝑊 ′ ∥ CCN⟦𝑂⟧⟩ ⇓N 𝑅′

such that (𝑅, 𝑅′) ∈
RN⟦𝜏⟧.
Therefore, using Let reduction in the target

(⟨Σ ∥ let 𝑥 =𝑁 in 𝑂⟩
, ⟨Σ′ ∥ CCN⟦let 𝑥 =𝑁 in 𝑂⟧⟩)

∈ MN⟦𝜏⟧ □

References
[1] Amal Ahmed. Semantics of Types for Mutable State. PhD thesis, Prince-

ton University, 2004.

[2] Amal Ahmed andMatthias Blume. Typed closure conversion preserves

observational equivalence. In Proceeding of the 13th ACM SIGPLAN
international conference on Functional programming, ICFP 2008, Victoria,
BC, Canada, September 20-28, 2008, pages 157–168, 2008.

[3] Andrew W. Appel and Trevor Jim. Continuation-passing, closure-

passing style. In Conference Record of the Sixteenth Annual ACM Sym-
posium on Principles of Programming Languages, Austin, Texas, USA,
January 11-13, 1989, pages 293–302, 1989.

[4] Lennart Augustsson. A compiler for lazy ml. In Proceedings of the 1984
ACM Symposium on LISP and Functional Programming, LFP ’84, 1984.

[5] Lennart Augustsson. Compiling pattern matching. In Proceedings
Of a Conference on Functional Programming Languages and Computer
Architecture, pages 368–381, 1985.

[6] William J. Bowman and Amal Ahmed. Typed closure conversion for

the calculus of constructions. In Proceedings of the 39th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI
2018, Philadelphia, PA, USA, June 18-22, 2018, pages 797–811, 2018.

[7] Olivier Danvy. An extensional characterization of lambda-lifting

and lambda-dropping. In Functional and Logic Programming, 4th Fuji
International Symposium, FLOPS’99, Tsukuba, Japan, November 11-13,
1999, Proceedings, pages 241–250, 1999.

[8] Paul Downen, Zena M. Ariola, Simon Peyton Jones, and Richard A.

Eisenberg. Kinds are calling conventions. Proc. ACM Program. Lang.,
4(ICFP):104:1–104:29, 2020.

[9] Paul Downen, Philip Johnson-Freyd, and Zena M. Ariola. Abstracting

models of strong normalization for classical calculi. J. Log. Algebraic
Methods Program., 111:100512, 2020.

[10] Paul Downen, Zachary Sullivan, Zena M. Ariola, and Simon Peyton

Jones. Codata in action. In Programming Languages and Systems -
28th European Symposium on Programming, ESOP 2019, Held as Part
of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2019, Prague, Czech Republic, April 6-11, 2019, Proceedings, pages
119–146, 2019.

[11] Derek Dreyer, Georg Neis, and Lars Birkedal. The impact of higher-

order state and control effects on local relational reasoning. J. Funct.
Program., 22(4-5):477–528, 2012.

[12] John Hughes. The Design and Implementation of Programming lan-
guages. PhD thesis, University of Oxford, 1983.

[13] Thomas Johnsson. Efficient compilation of lazy evaluation. In Pro-
ceedings of the 1984 SIGPLAN Symposium on Compiler Construction,
Montreal, Canada, June 17-22, 1984, pages 58–69, 1984.

[14] Jean-Louis Krivine. A call-by-name lambda-calculus machine. Higher-
Order and Symbolic Computation, 20(3):199–207, 2007.

[15] Peter J. Landin. The mechanical evaluation of expressions. The Com-
puter Journal, 6(4):308–320, 1964.

[16] John Launchbury. A natural semantics for lazy evaluation. In Confer-
ence Record of the Twentieth Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, Charleston, South Carolina,
USA, January 1993, pages 144–154, 1993.

[17] Phillip Mates, Jamie Perconti, and Amal Ahmed. Under control: Com-

positionally correct closure conversion with mutable state. In Eka-

terina Komendantskaya, editor, Proceedings of the 21st International
Symposium on Principles and Practice of Programming Languages, PPDP
2019, Porto, Portugal, October 7-9, 2019. ACM, 2019.

[18] Luke Maurer, Paul Downen, Zena M. Ariola, and Simon L. Peyton

Jones. Compiling without continuations. In Proceedings of the 38th
ACM SIGPLANConference on Programming Language Design and Imple-
mentation, PLDI 2017, Barcelona, Spain, June 18-23, 2017, pages 482–494,
2017.

[19] Yasuhiko Minamide, J. Gregory Morrisett, and Robert Harper. Typed

closure conversion. In Conference Record of POPL’96: The 23rd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
Papers Presented at the Symposium, St. Petersburg Beach, Florida, USA,
January 21-24, 1996, pages 271–283, 1996.

[20] Étienne Miquey and Hugo Herbelin. Realizability interpretation and

normalization of typed call-by-need \lambda -calculus with control.

In Christel Baier and Ugo Dal Lago, editors, Foundations of Software
Science and Computation Structures - 21st International Conference,
FOSSACS 2018, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20,
2018, Proceedings, volume 10803 of Lecture Notes in Computer Science,
pages 276–292, 2018.

[21] Masayuki Mizuno and Eijiro Sumii. Formal verifications of call-by-

need and call-by-name evaluations with mutual recursion. In An-

thony Widjaja Lin, editor, Programming Languages and Systems - 17th
Asian Symposium, APLAS 2019, Nusa Dua, Bali, Indonesia, December 1-
4, 2019, Proceedings, volume 11893 of Lecture Notes in Computer Science,
pages 181–201, 2019.

[22] Chris Okasaki, Peter Lee, and David Tarditi. Call-by-need and

continuation-passing style. LISP Symb. Comput., 7(1):57–82, 1994.
[23] Zoe Paraskevopoulou and Andrew W. Appel. Closure conversion is

safe for space. Proc. ACM Program. Lang., 3(ICFP):83:1–83:29, 2019.
[24] Simon L. Peyton Jones. The Implementation of Functional Programming

Languages. Prentice-Hall, 1987.
[25] Simon L. Peyton Jones and John Launchbury. Unboxed values as first

class citizens in a non-strict functional language. In Functional Pro-
gramming Languages and Computer Architecture, 5th ACM Conference,
Cambridge, MA, USA, August 26-30, 1991, Proceedings, pages 636–666,

PEPM ’21, January 18–19, 2021, Virtual, Denmark Zachary J. Sullivan, Paul Downen, and Zena M. Ariola

1991.

[26] Simon L. Peyton Jones and Jon Salkild. The spineless tagless g-machine.

In Proceedings of the Fourth International Conference on Functional
Programming Languages and Computer Architecture, FPCA ’89, pages

184–201, 1989.

[27] Andrew M. Pitts. Reasoning about local variables with operationally-

based logical relations. In Proceedings, 11th Annual IEEE Symposium
on Logic in Computer Science, New Brunswick, New Jersey, USA, July
27-30, 1996, pages 152–163. IEEE Computer Society, 1996.

[28] Zhong Shao and Andrew W. Appel. Space-efficient closure representa-

tions. In Proceedings of the 1994 ACM Conference on LISP and Functional
Programming, Orlando, Florida, USA, 27-29 June 1994, pages 150–161,
1994.

[29] Mitchell Wand and Paul Steckler. Selective and lightweight closure

conversion. In Proceedings of the 21st ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, POPL ’94, pages 435–445,
1994.

	Abstract
	1 Introduction
	2 Strict Closure-Conversion
	2.1 Strict Source Language: V
	2.2 Strict Target Language: V'
	2.3 Transformation
	2.4 Properties

	3 Non-strict Closure-Conversion
	3.1 Non-strict Source Language: N
	3.2 Transformation

	4 Lazy Closure-Conversion
	4.1 Lazy Source Language: L
	4.2 Strict Target Language with Mutation: V'!
	4.3 Transformation

	5 Partial Closure Transformation
	5.1 An IL for Partial Closure-Conversion
	5.2 Partial Transformation

	6 Related Work
	7 Conclusion
	Acknowledgments
	A Adequacy of Strict Closure-Conversion
	B Adequacy of Non-strict Closure-Conversion
	References

