#### Strictly Capturing Non-strict Closures

Zachary J. Sullivan, Paul Downen, and Zena M. Ariola University of Oregon

PEPM '21, January 18-19, 2021, Virtual

1

let 
$$x = (\text{let } y = 2 + 1 \text{ in } \lambda z. y) \text{ in } (x 3) + (x 4)$$

let 
$$x = (\text{let } y = 2 + 1 \text{ in } \lambda z. y) \text{ in } (x 3) + (x 4)$$



let 
$$x = (\text{let } y = 2 + 1 \text{ in } \lambda z. y) \text{ in } (x 3) + (x 4)$$



#### Pairs of environment and code are **closures**.

let 
$$x = ($$
let  $y = 2 + 1$  in  $\lambda z. y )$  in  $(x 3) + (x 4)$ 



Pairs of environment and code are **closures**. Here, they are a feature of the runtime system.

# What if our compiler target language does not automatically create closures?

# What if our compiler target language does not automatically create closures?

# What if our compiler target language does not automatically create closures?

e.g. C

# What if our compiler target language does not automatically create closures?

#### e.g. C

Solution: make closures explicit in the syntax

### Closure-conversion

#### Closure-conversion

*Closure-conversion* transforms a language supporting open functions into one that has only closed functions.

*Closure-conversion* transforms a language supporting open functions into one that has only closed functions.

It is used in Scheme's Rabbit and Orbit compilers, and the SML New Jersey compiler.

*Closure-conversion* transforms a language supporting open functions into one that has only closed functions.

It is used in Scheme's Rabbit and Orbit compilers, and the SML New Jersey compiler. *Call-by-value compilers* 

*Closure-conversion* transforms a language supporting open functions into one that has only closed functions.

It is used in Scheme's Rabbit and Orbit compilers, and the SML New Jersey compiler. *Call-by-value compilers* 

But what about Haskell?

#### ► Specify non-strict closure-conversions:

- call-by-name
- call-by-need

#### ► Specify non-strict closure-conversions:

- call-by-name
- call-by-need

Strictness is an essential aspect of useful closure-conversion.

- Specify non-strict closure-conversions:
  - call-by-name
  - call-by-need

Strictness is an essential aspect of useful closure-conversion.

► We propose *partial closure-conversion*, which allows closures to be introduced locally instead of as a total transformation.

## **Closures in Strict Languages**

let 
$$x = (\text{let } y = 2 + 1 \text{ in } \lambda z. y) \text{ in } (x 3) + (x 4)$$

let 
$$x = (\text{let } y = 2 + 1 \text{ in } \lambda z. y) \text{ in } (x 3) + (x 4)$$

Capturing a closure:

let 
$$x = (\text{let } y = 2 + 1 \text{ in } \lambda z. y) \text{ in } (x 3) + (x 4)$$

Capturing a closure:

$$\overline{\langle \Sigma \parallel \lambda x. M \rangle \Downarrow (\Sigma, \lambda x. M)} \ Lam$$

 $\langle \{3/y\} \parallel \lambda z. y \rangle \Downarrow (\{3/y\}, \lambda z. y)$ 

let 
$$x = (\text{let } y = 2 + 1 \text{ in } \lambda z. y) \text{ in } (x 3) + (x 4)$$

Capturing a closure:

$$\overline{\langle \Sigma \parallel \lambda x. M \rangle \Downarrow (\Sigma, \lambda x. M)} \ Lam$$

$$\langle \{3/y\} \parallel \lambda z. y \rangle \Downarrow (\{3/y\}, \lambda z. y)$$

Entering a closure:

let 
$$x = (\text{let } y = 2 + 1 \text{ in } \lambda z. y) \text{ in } (x 3) + (x 4)$$

Capturing a closure:

$$\overline{\langle \Sigma \parallel \lambda x. M \rangle \Downarrow (\Sigma, \lambda x. M)} \ Lam$$

$$\langle \{3/y\} \parallel \lambda z. y \rangle \Downarrow (\{3/y\}, \lambda z. y)$$

Entering a closure:

 $\frac{\langle \Sigma \parallel M \rangle \Downarrow (\Sigma', \lambda x. L) \quad \langle \Sigma \parallel N \rangle \Downarrow W \quad \langle \Sigma', W/x \parallel L \rangle \Downarrow V}{\langle \Sigma \parallel M N \rangle \Downarrow V} \quad App$ 

let 
$$x = (\text{let } y = 2 + 1 \text{ in } \lambda z. y) \text{ in } (x 3) + (x 4)$$

Capturing a closure:

$$\overline{\langle \Sigma \parallel \lambda x. M \rangle \Downarrow (\Sigma, \lambda x. M)} \ Lam$$

$$\langle \{3/y\} \parallel \lambda z. y \rangle \Downarrow (\{3/y\}, \lambda z. y)$$

Entering a closure:

 $\frac{\langle \Sigma \parallel M \rangle \Downarrow (\Sigma', \lambda x. L) \quad \langle \Sigma \parallel N \rangle \Downarrow W \quad \langle \Sigma', W/x \parallel L \rangle \Downarrow V}{\langle \Sigma \parallel M N \rangle \Downarrow V} \quad App$ 

$$\frac{\vdots}{\langle (\{3/y\}, \lambda z. y)/x \parallel x \rangle \Downarrow (\{3/y\}, \lambda z. y)} \quad \frac{\vdots}{\langle \{3/y, 3/z\} \parallel y \rangle \Downarrow 3} \\ \langle (\{3/y\}, \lambda z. y)/x \parallel x 3 \rangle \Downarrow 3$$

let 
$$x = (\text{let } y = 2 + 1 \text{ in } \lambda z. y) \text{ in } (x 3) + (x 4)$$

Capturing a closure:

$$\overline{\langle \Sigma \parallel \lambda x. M \rangle \Downarrow (\Sigma, \lambda x. M)} \ Lam$$

$$\langle \{3/y\} \parallel \lambda z. y \rangle \Downarrow (\{3/y\}, \lambda z. y)$$

Entering a closure:

 $\frac{\langle \Sigma \parallel M \rangle \Downarrow (\Sigma', \lambda x. L) \quad \langle \Sigma \parallel N \rangle \Downarrow W \quad \langle \Sigma', W/x \parallel L \rangle \Downarrow V}{\langle \Sigma \parallel M N \rangle \Downarrow V} \quad App$ 

$$\frac{\vdots}{\langle (\{3/y\}, \lambda z. y)/x \parallel x \rangle \Downarrow (\{3/y\}, \lambda z. y)} \quad \frac{\vdots}{\langle \{3/y, 3/z\} \parallel y \rangle \Downarrow 3} \\ \langle (\{3/y\}, \lambda z. y)/x \parallel x 3 \rangle \Downarrow 3$$

let 
$$x = (\text{let } y = 2 + 1 \text{ in } \lambda z. y) \text{ in } (x 3) + (x 4)$$

let 
$$x = (\text{let } y = 2 + 1 \text{ in } \lambda z. y) \text{ in } (x 3) + (x 4)$$

is closure-converted to the following:

let 
$$x = (\text{let } y = 2 + 1 \text{ in } \lambda z. y) \text{ in } (x 3) + (x 4)$$

is closure-converted to the following:

let x = (let y = 2 + 1 in pack (y, 
$$\lambda(y, z), y$$
))
in (unpack x as (e, f) in f (e, 3)) +
(unpack x as (e, f) in f (e, 4))

let 
$$x = (\text{let } y = 2 + 1 \text{ in } \lambda z. y) \text{ in } (x 3) + (x 4)$$

is closure-converted to the following:

$$\begin{array}{l} \texttt{let } x = (\texttt{let } y = 2 + 1 \texttt{ in } \texttt{pack} (y, \lambda(y, z), y)) \\ \texttt{in } (\texttt{unpack } x \texttt{ as } (e, f) \texttt{ in } f (e, 3)) \\ \texttt{(unpack } x \texttt{ as } (e, f) \texttt{ in } f (e, 4)) \end{array}$$

#### How can we run this program?

$$\begin{array}{l} \texttt{let } x = (\texttt{let } y = 2 + 1 \texttt{ in } \texttt{pack } (y, \lambda(y, z), y)) \\ \texttt{in } (\texttt{unpack } x \texttt{ as } (e, f) \texttt{ in } f (e, 3)) \\ \texttt{(unpack } x \texttt{ as } (e, f) \texttt{ in } f (e, 4)) \end{array} + \\ \end{array}$$

$$\begin{aligned} & \texttt{let } x = (\texttt{let } y = 2 + 1 \texttt{ in } \texttt{pack } (y, \lambda(y, z), y) \texttt{)} \\ & \texttt{in } (\texttt{unpack } x \texttt{ as } (e, f) \texttt{ in } f (e, 3)) \\ & \texttt{(unpack } x \texttt{ as } (e, f) \texttt{ in } f (e, 4)) \end{aligned}$$

Functions do not need to capture free variables:

$$\begin{aligned} & \texttt{let } x = (\texttt{let } y = 2 + 1 \texttt{ in } \texttt{pack } (y, \lambda(y, z), y)) \\ & \texttt{in } (\texttt{unpack } x \texttt{ as } (e, f) \texttt{ in } f (e, 3)) \\ & \texttt{(unpack } x \texttt{ as } (e, f) \texttt{ in } f (e, 4)) \end{aligned}$$

Functions do not need to capture free variables:

$$\overline{\langle \Sigma \parallel \lambda x. M \rangle \Downarrow \lambda x. M}$$
 Lam'

$$\begin{aligned} & \texttt{let } x = (\texttt{let } y = 2 + 1 \texttt{ in } \texttt{pack } (y, \lambda(y, z), y)) \\ & \texttt{in } (\texttt{unpack } x \texttt{ as } (e, f) \texttt{ in } f (e, 3)) \\ & \texttt{(unpack } x \texttt{ as } (e, f) \texttt{ in } f (e, 4)) \end{aligned}$$

Functions do not need to capture free variables:

$$\overline{\langle \Sigma \parallel \lambda x. M \rangle \Downarrow \lambda x. M} \text{ Lam'}$$

Applications do not need unpack to them:

$$\begin{aligned} & \texttt{let } x = (\texttt{let } y = 2 + 1 \texttt{ in } \texttt{pack } (y, \lambda(y, z), y)) \\ & \texttt{in } (\texttt{unpack } x \texttt{ as } (e, f) \texttt{ in } f (e, 3)) \\ & \texttt{(unpack } x \texttt{ as } (e, f) \texttt{ in } f (e, 4)) \end{aligned}$$

Functions do not need to capture free variables:

$$\overline{\langle \Sigma \parallel \lambda x. M \rangle \Downarrow \lambda x. M} \ Lam'$$

Applications do not need unpack to them:

$$\frac{\langle \Sigma \parallel M \rangle \Downarrow \lambda x. L}{\langle \Sigma \parallel N \rangle \Downarrow W} \langle W/x \parallel L \rangle \Downarrow V}{\langle \Sigma \parallel M N \rangle \Downarrow V} App'$$
#### Semantics of Target Language

$$\begin{aligned} & \texttt{let } x = (\texttt{let } y = 2 + 1 \texttt{ in } \texttt{pack } (y, \lambda(y, z), y)) \\ & \texttt{in } (\texttt{unpack } x \texttt{ as } (e, f) \texttt{ in } f (e, 3)) \\ & \texttt{(unpack } x \texttt{ as } (e, f) \texttt{ in } f (e, 4)) \end{aligned}$$

Functions do not need to capture free variables:

$$\overline{\langle \Sigma \parallel \lambda x. M \rangle \Downarrow \lambda x. M} \ Lam'$$

Applications do not need unpack to them:

$$\frac{\langle \Sigma \parallel M \rangle \Downarrow \lambda x. L}{\langle \Sigma \parallel N \rangle \Downarrow W} \langle W/x \parallel L \rangle \Downarrow V}{\langle \Sigma \parallel M N \rangle \Downarrow V} App'$$

# Useful Closure-conversion

### Useful Closure-conversion

# After closure-conversion, the program does not need a runtime that automatically creates closures.

# Closures in Non-strict Languages

let 
$$x = 1$$
 in (let  $y = x + 2$  in (let  $x = 3$  in  $y$ ))

let 
$$x = 1$$
 in (let  $y = x + 2$  in (let  $x = 3$  in  $y$ ))



let 
$$x = 1$$
 in (let  $y = x + 2$  in (let  $x = 3$  in  $y$ ))



Non-strict languages create thunk closures *in addition to* function closures.

#### **Closures in Call-by-name Languages**

let 
$$x = 1$$
 in (let  $y = x + 2$  in (let  $x = 3$  in y))

let 
$$x = 1$$
 in (let  $y = x + 2$  in (let  $x = 3$  in  $y$ ))

Capturing a thunk closure:

let 
$$x = 1$$
 in (let  $y = x + 2$  in (let  $x = 3$  in  $y$ ))

Capturing a thunk closure:

$$\frac{\langle \Sigma, \ (\Sigma, M) / x \ \parallel N \rangle \Downarrow R}{\langle \Sigma \parallel \texttt{let} \ x = M \ \texttt{in} \ N \rangle \Downarrow R} \ Let$$

let 
$$x = 1$$
 in (let  $y = x + 2$  in (let  $x = 3$  in  $y$ ))

Capturing a thunk closure:

$$\frac{\langle \Sigma, \ (\Sigma, M)/x \ \| \ N \rangle \Downarrow R}{\langle \Sigma \| \ \texttt{let} \ x = M \ \texttt{in} \ N \rangle \Downarrow R} \ Let$$

$$\frac{(\dots/x, (\{\dots/x\}, x+2))/y \parallel \text{let } x = 3 \text{ in } y) \Downarrow 3}{(\dots/x \parallel \text{let } y = x+2) \text{ in } (\text{let } x = 3 \text{ in } y)) \Downarrow 3}$$

٠

let 
$$x = 1$$
 in (let  $y = x + 2$  in (let  $x = 3$  in  $y$ ))

Entering a thunk closure:

let 
$$x = 1$$
 in (let  $y = x + 2$  in (let  $x = 3$  in  $y$ ))

Entering a thunk closure:

$$\frac{\Sigma(x) = (\Sigma', M) \quad \langle \Sigma' \parallel M \rangle \Downarrow R}{\langle \Sigma \parallel x \rangle \Downarrow R} \quad Var$$

let 
$$x = 1$$
 in (let  $y = x + 2$  in (let  $x = 3$  in  $y$ ))

Entering a thunk closure:

$$\frac{\sum(x) = (\Sigma', M) \quad \langle \Sigma' \parallel M \rangle \Downarrow R}{\langle \Sigma \parallel x \rangle \Downarrow R} \quad Var$$

$$\frac{\vdots}{\langle (\{\}, 1)/x \parallel x + 2 \rangle \Downarrow 3}$$

$$\langle (\{\}, 1)/x, (\{(\{\}, 1)/x\}, x + 2) / y, (\{\dots/x, \dots/y\}, 3)/x \parallel y \rangle \Downarrow 3$$

$$\texttt{let } x = 1 \texttt{ in } (\texttt{let } y = \boxed{x+2} \texttt{ in } (\texttt{let } x = 3 \texttt{ in } \boxed{y}))$$

let 
$$x = 1$$
 in (let  $y = x + 2$  in (let  $x = 3$  in y))

closures converts to:

let 
$$x = 1$$
 in (let  $y = x + 2$  in (let  $x = 3$  in y))

closures converts to:

let 
$$x = \text{pack}((), \lambda(), 1)$$
 in  
let  $y = \text{pack}(x, \lambda x. (\text{unpack } x \text{ as } (e, f) \text{ in } f e) + 2)$  in  
let  $x = \text{pack}((x, y), \lambda(x, y), 3)$  in  
unpack  $y$  as  $(e, f)$  in  $f e$ 

let 
$$x = 1$$
 in (let  $y = x + 2$  in (let  $x = 3$  in  $y$ ))

closures converts to:

$$\begin{array}{l} \texttt{let } x = \texttt{pack } ((), \lambda(), 1) \texttt{ in } \\ \texttt{let } y = \texttt{pack } (x, \lambda x. (\texttt{unpack } x \texttt{ as } (e, f) \texttt{ in } f \texttt{ e}) + 2) \texttt{ in } \\ \texttt{let } x = \texttt{pack } ((x, y), \lambda(x, y), 3) \texttt{ in } \\ \texttt{unpack } y \texttt{ as } (e, f) \texttt{ in } f \texttt{ e} \end{array}$$

How can we run this program?

let 
$$x = 1$$
 in (let  $y = x + 2$  in (let  $x = 3$  in  $y$ ))

closures converts to:

$$\begin{array}{l} \texttt{let } x = \texttt{pack } ((), \lambda(), 1) \texttt{ in } \\ \texttt{let } y = \texttt{pack } (x, \lambda x. (\texttt{unpack } x \texttt{ as } (e, f) \texttt{ in } f \texttt{ e}) + 2) \texttt{ in } \\ \texttt{let } x = \texttt{pack } ((x, y), \lambda(x, y), 3) \texttt{ in } \\ \texttt{unpack } y \texttt{ as } (e, f) \texttt{ in } f \texttt{ e} \end{array}$$

How can we run this program? The natural choice is a call-by-name language with data.

Non-strict data types are not evaluated until forced by their context.

Non-strict data types are not evaluated until forced by their context.

For instance, existential data types:

Non-strict data types are not evaluated until forced by their context.

For instance, existential data types:

$$\overline{\langle \Sigma \parallel \texttt{pack } M \rangle \Downarrow (\Sigma,\texttt{pack } M)} \ Pack$$

Non-strict data types are not evaluated until forced by their context.

For instance, existential data types:

$$\overline{\langle \Sigma \parallel \texttt{pack } M 
angle \Downarrow (\Sigma,\texttt{pack } M)} \; Pack$$

$$\frac{\langle \Sigma \parallel M \rangle \Downarrow (\Sigma', \text{pack } L) \quad \langle \Sigma, (\Sigma', L) / x \parallel N \rangle \Downarrow R}{\langle \Sigma \parallel \text{unpack } M \text{ as } x \text{ in } N \rangle \Downarrow R} \quad Unpack$$

Non-strict data types are not evaluated until forced by their context.

For instance, existential data types:

$$\overline{\langle \Sigma \parallel \texttt{pack} \mid M 
angle \Downarrow (\Sigma,\texttt{pack} \mid M)} \; Pack$$

$$\frac{\langle \Sigma \parallel M \rangle \Downarrow (\Sigma', \text{pack } L) }{\langle \Sigma \parallel \text{unpack } M \text{ as } x \text{ in } N \rangle \Downarrow R} \quad Unpack$$

Non-strict data types do not remove the need for closures in our runtime.

Non-strict data types are not evaluated until forced by their context.

For instance, existential data types:

$$\overline{\langle \Sigma \parallel \texttt{pack} \mid M 
angle \Downarrow (\Sigma,\texttt{pack} \mid M)} \; Pack$$

$$\frac{\langle \Sigma \parallel M \rangle \Downarrow (\Sigma', \text{pack } L) }{\langle \Sigma \parallel \text{unpack } M \text{ as } x \text{ in } N \rangle \Downarrow R} \quad Unpack$$

#### Non-strict data types do not remove the need for closures in our runtime. Neither do non-strict functions, nor let-expressions

What if we simply remove the closure constructing aspect of non-strict data?

What if we simply remove the closure constructing aspect of non-strict data?

$$\overline{\langle \Sigma \parallel ext{pack } M 
angle \Downarrow ext{ pack } M} Pack$$

#### Target Language for Call-by-name Closure-conversion What if we simply remove the closure constructing aspect of non-strict data?

$$\overline{\langle \Sigma \parallel \text{pack } M \rangle \Downarrow \text{pack } M} Pack$$

$$\overline{\langle \Sigma \parallel M \rangle \Downarrow \text{pack } L} \quad \langle \Sigma, L/x \parallel N \rangle \Downarrow R$$

$$\overline{\langle \Sigma \parallel \text{unpack } M \text{ as } x \text{ in } N \rangle \Downarrow R } Unpack$$

#### Target Language for Call-by-name Closure-conversion What if we simply remove the closure constructing aspect of non-strict data?

$$\overline{\langle \Sigma \parallel \text{pack } M \rangle \Downarrow \text{pack } M} \xrightarrow{Pack}$$

$$\overline{\langle \Sigma \parallel M \rangle \Downarrow \text{pack } L} \quad \langle \Sigma, L/x \parallel N \rangle \Downarrow R \quad Unpack$$

$$\overline{\langle \Sigma \parallel \text{unpack } M \text{ as } x \text{ in } N \rangle \Downarrow R} \quad Unpack$$

 $\langle \text{pack}((), \lambda(), 1)/x, \text{ pack}(x, \lambda x, \dots) \rangle / y \parallel \text{let } x = \text{pack}((x, y), \lambda(x, y), 3) \text{ in } (\dots) \rangle \Downarrow 3$ 

 $(\operatorname{pack}((), \lambda x. 1)/x \parallel \operatorname{let} y = \operatorname{pack}(x, \lambda x. ...)$  in  $(\operatorname{let} x = \operatorname{pack}((x, y), \lambda(x, y). 3)$  in  $(\dots) ) \downarrow 3$ 

#### Target Language for Call-by-name Closure-conversion What if we simply remove the closure constructing aspect of non-strict data?

$$\overline{\langle \Sigma \parallel \text{pack } M \rangle \Downarrow \text{pack } M} \xrightarrow{Pack} Q$$

$$\overline{\langle \Sigma \parallel M \rangle \Downarrow \text{pack } L} \quad \langle \Sigma, L/x \parallel N \rangle \Downarrow R$$

$$\overline{\langle \Sigma \parallel \text{unpack } M \text{ as } x \text{ in } N \rangle \Downarrow R} \quad Unpack$$

 $\langle \text{pack}((), \lambda(), 1)/x, \text{ pack}(x, \lambda x, \dots) \rangle / y \parallel \text{let } x = \text{pack}((x, y), \lambda(x, y), 3) \text{ in } (\dots) \rangle \Downarrow 3$ 

 $(\operatorname{pack}((), \lambda x. 1)/x \parallel \operatorname{let} y = \operatorname{pack}(x, \lambda x. ...)$  in  $(\operatorname{let} x = \operatorname{pack}((x, y), \lambda(x, y). 3)$  in  $(\dots) ) \downarrow 3$ 

# Using non-strict data without a closure constructing target language is wrong.

We didn't have this problem for call-by-value closure-conversion.

We didn't have this problem for call-by-value closure-conversion. *Call-by-value data types do not require closures!*
We didn't have this problem for call-by-value closure-conversion. *Call-by-value data types do not require closures!* 

$$\frac{\langle \Sigma \parallel M \rangle \Downarrow V}{\langle \Sigma \parallel \text{pack } M \rangle \Downarrow \text{ pack } V} Pack$$

We didn't have this problem for call-by-value closure-conversion. *Call-by-value data types do not require closures!* 

$$\frac{\langle \Sigma \parallel M \rangle \Downarrow V}{\langle \Sigma \parallel \text{pack } M \rangle \Downarrow \text{ pack } V} Pack$$

$$\frac{\langle \Sigma \parallel M \rangle \Downarrow \text{ pack } V}{\langle \Sigma \parallel \text{unpack } M \text{ as } x \text{ in } N \rangle \Downarrow R} Unpack$$

Fortunately, the closure-conversion transformation also performed a thunking transformation.

Fortunately, the closure-conversion transformation also performed a thunking transformation.

let x = pack ((), 
$$\lambda$$
(). 1 ) in
let y = pack (x,  $\lambda x$ . (unpack x as (e, f) in f e) + 2 ) in
let x = pack ((x, y),  $\lambda(x, y)$ . 3 ) in
unpack y as (e, f) in f e

Fortunately, the closure-conversion transformation also performed a thunking transformation.

let x = pack ((), 
$$\lambda$$
(). 1 ) in
let y = pack (x,  $\lambda x$ . (unpack x as (e, f) in f e) + 2 ) in
let x = pack ((x, y),  $\lambda(x, y)$ . 3 ) in
unpack y as (e, f) in f e

Call-by-name closure-conversion preserves semantics in a *call-by-value* target language.

Fortunately, the closure-conversion transformation also performed a thunking transformation.

let x = pack ((), 
$$\lambda$$
(). 1 ) in
let y = pack (x,  $\lambda x$ . (unpack x as (e, f) in f e) + 2 ) in
let x = pack ((x, y),  $\lambda(x, y)$ . 3 ) in
unpack y as (e, f) in f e

Call-by-name closure-conversion preserves semantics in a *call-by-value* target language.

Which language do we run our call-by-name closure-converted program?

Which language do we run our call-by-name closure-converted program?

| Runtime        | Closure ignorant | Correct      | Useful       |
|----------------|------------------|--------------|--------------|
| call-by-name   |                  | $\checkmark$ |              |
| call-by-name'  | $\checkmark$     |              |              |
| call-by-value  |                  | $\checkmark$ |              |
| call-by-value' | $\checkmark$     | $\checkmark$ | $\checkmark$ |

Which language do we run our call-by-name closure-converted program?

| Runtime        | Closure ignorant | Correct      | Useful       |
|----------------|------------------|--------------|--------------|
| call-by-name   |                  | $\checkmark$ |              |
| call-by-name'  | $\checkmark$     |              |              |
| call-by-value  |                  | $\checkmark$ |              |
| call-by-value' | $\checkmark$     | $\checkmark$ | $\checkmark$ |

The target for call-by-name closure-conversion should be strict.

Strict closure-conversion preserves types by hiding environments with existential types (pack expressions).

Strict closure-conversion preserves types by hiding environments with existential types (pack expressions).

```
e.g. \lambda x. x + x and \lambda x. x + y
```

Strict closure-conversion preserves types by hiding environments with existential types (pack expressions).

e.g.  $\lambda x. x + x$  and  $\lambda x. x + y$ 

 $\llbracket \texttt{int} \to \texttt{int} \rrbracket = \exists X. X \times (X \times \texttt{int} \to \texttt{int})$ 

Strict closure-conversion preserves types by hiding environments with existential types (pack expressions).

e.g.  $\lambda x. x + x$  and  $\lambda x. x + y$ 

 $\llbracket \texttt{int} \to \texttt{int} \rrbracket = \exists X. X \times (X \times \texttt{int} \to \texttt{int})$ 

Type preservation for call-by-name requires two type translations:

Strict closure-conversion preserves types by hiding environments with existential types (pack expressions).

```
e.g. \lambda x. x + x and \lambda x. x + y
```

```
\llbracket \texttt{int} \to \texttt{int} \rrbracket = \exists X. X \times (X \times \texttt{int} \to \texttt{int})
```

Type preservation for call-by-name requires two type translations: For results

Strict closure-conversion preserves types by hiding environments with existential types (pack expressions).

e.g.  $\lambda x. x + x$  and  $\lambda x. x + y$ 

 $\llbracket \texttt{int} \to \texttt{int} \rrbracket = \exists X. X \times (X \times \texttt{int} \to \texttt{int})$ 

Type preservation for call-by-name requires two type translations: For results

$$\mathsf{Res}\llbracket\tau \to \tau'\rrbracket = \exists X. X \times (X \times \mathsf{Val}\llbracket\tau\rrbracket \to \mathsf{Res}\llbracket\tau'\rrbracket)$$

Strict closure-conversion preserves types by hiding environments with existential types (pack expressions).

e.g.  $\lambda x. x + x$  and  $\lambda x. x + y$ 

 $\llbracket \texttt{int} \to \texttt{int} \rrbracket = \exists X. X \times (X \times \texttt{int} \to \texttt{int})$ 

Type preservation for call-by-name requires two type translations: For results

$$\mathsf{Res}\llbracket\tau \to \tau'\rrbracket = \exists X. X \times (X \times \mathsf{Val}\llbracket\tau\rrbracket \to \mathsf{Res}\llbracket\tau'\rrbracket)$$

For values, turned into thunk closures

Strict closure-conversion preserves types by hiding environments with existential types (pack expressions).

e.g.  $\lambda x. x + x$  and  $\lambda x. x + y$ 

 $\llbracket \texttt{int} \to \texttt{int} \rrbracket = \exists X. X \times (X \times \texttt{int} \to \texttt{int})$ 

Type preservation for call-by-name requires two type translations: For results

$$\mathsf{Res}\llbracket\tau \to \tau'\rrbracket = \exists X. \, X \times (X \times \mathsf{Val}\llbracket\tau\rrbracket \to \mathsf{Res}\llbracket\tau'\rrbracket)$$

For values, turned into thunk closures

$$\mathsf{Val}\llbracket \tau \rrbracket = \exists X. X \times (X \to \mathsf{Res}\llbracket \tau \rrbracket)$$

Strict closure-conversion preserves types by hiding environments with existential types (pack expressions).

e.g.  $\lambda x. x + x$  and  $\lambda x. x + y$ 

 $\llbracket \texttt{int} \to \texttt{int} \rrbracket = \exists X. X \times (X \times \texttt{int} \to \texttt{int})$ 

Type preservation for call-by-name requires two type translations: For results

$$\mathsf{Res}\llbracket\tau \to \tau'\rrbracket = \exists X. \, X \times (X \times \mathsf{Val}\llbracket\tau\rrbracket \to \mathsf{Res}\llbracket\tau'\rrbracket)$$

For values, turned into thunk closures

$$\mathsf{Val}\llbracket \tau \rrbracket = \exists X. X \times (X \to \mathsf{Res}\llbracket \tau \rrbracket)$$

#### **Closures in Call-by-need Languages**

let 
$$x = (2+1)$$
 in  $x + x$ 

let 
$$x = (2+1)$$
 in  $x + x$ 

for which call-by-name closure-conversion yields:

$$let x = pack ((), \lambda(), 2 + 1) in$$

$$(unpack x as (e, f) in f e) + (unpack x as (e, f) in f e)$$

let 
$$x = (2+1)$$
 in  $x + x$ 

for which call-by-name closure-conversion yields:

$$let x = pack ((), \lambda(), 2 + 1) in$$

$$(unpack x as (e, f) in f e) + (unpack x as (e, f) in f e)$$

The evaluation of 2 + 1 will be performed twice in a call-by-value target language.

let 
$$x = (2+1)$$
 in  $x + x$ 

for which call-by-name closure-conversion yields:

$$let x = pack ((), \lambda(), 2 + 1) in$$

$$(unpack x as (e, f) in f e) + (unpack x as (e, f) in f e)$$

The evaluation of 2 + 1 will be performed twice in a call-by-value target language.

### Sharing has been lost!

Thunk closures must be updatable with their evaluation result.

Thunk closures must be updatable with their evaluation result.

Like call-by-value implementations of delay and force, we use:

Thunk closures must be updatable with their evaluation result.

Like call-by-value implementations of delay and force, we use:

► Mutable references, to store and update

Thunk closures must be updatable with their evaluation result.

Like call-by-value implementations of delay and force, we use:

- Mutable references, to store and update
- Sum types, to distinguish unevaluated thunks from their evaluation result

Thunk closures must be updatable with their evaluation result.

Like call-by-value implementations of delay and force, we use:

- Mutable references, to store and update
- Sum types, to distinguish unevaluated thunks from their evaluation result

let 
$$x = (2+1)$$
 in  $x + x$ 

let 
$$x = (2+1)$$
 in  $x + x$ 

transformed with a call-by-need closure-conversion yields:

let 
$$x =$$
 store (pack ((),  $\lambda$ (). 2 + 1)) in  
(memo x) + (memo x)

let 
$$x = (2+1)$$
 in  $x + x$ 

transformed with a call-by-need closure-conversion yields:

let 
$$x =$$
 store (pack ((),  $\lambda$ (). 2 + 1)) in  
(memo x) + (memo x)

Where store and memo are the following macros:

let 
$$x = (2+1)$$
 in  $x + x$ 

transformed with a call-by-need closure-conversion yields:

let 
$$x =$$
 store (pack ((),  $\lambda$ (). 2 + 1)) in  
(memo x) + (memo x)

Where store and memo are the following macros:

store 
$$M \stackrel{\text{def}}{=} \text{new}(\text{inr } M)$$
  
memo  $x \stackrel{\text{def}}{=} \text{case } !x \text{ of}$   
inl  $v \rightarrow v$   
inr  $p \rightarrow$   
unpack  $p \text{ as } (e, f) \text{ in}$   
let  $v = f e \text{ in}$   
let \_ =  $(x := \text{inl } v) \text{ in } v$ 

The preservation argument from call-by-name transformations extends simply, because we use type preserving mutable references.

The preservation argument from call-by-name transformations extends simply, because we use type preserving mutable references.

The result translation is unchanged:

The preservation argument from call-by-name transformations extends simply, because we use type preserving mutable references.

The result translation is unchanged:

 $\operatorname{\mathsf{Res}}\llbracket\tau \to \tau'\rrbracket = \exists X. \, X \times (X \times \operatorname{\mathsf{Val}}\llbracket\tau\rrbracket \to \operatorname{\mathsf{Res}}\llbracket\tau'\rrbracket)$
#### Call-by-need Closure-conversion Preserves Types

The preservation argument from call-by-name transformations extends simply, because we use type preserving mutable references.

The result translation is unchanged:

$$\mathsf{Res}\llbracket\tau \to \tau'\rrbracket = \exists X. X \times (X \times \mathsf{Val}\llbracket\tau\rrbracket \to \mathsf{Res}\llbracket\tau'\rrbracket)$$

Values are turned into references to thunk closures or results:

#### Call-by-need Closure-conversion Preserves Types

The preservation argument from call-by-name transformations extends simply, because we use type preserving mutable references.

The result translation is unchanged:

$$\mathsf{Res}\llbracket\tau \to \tau'\rrbracket = \exists X. X \times (X \times \mathsf{Val}\llbracket\tau\rrbracket \to \mathsf{Res}\llbracket\tau'\rrbracket)$$

Values are turned into references to thunk closures or results:

$$\mathsf{Val}\llbracket \tau \rrbracket = \texttt{ref} \; (\mathsf{Res}\llbracket \tau \rrbracket + (\exists X. \, X \times (X \to \mathsf{Res}\llbracket \tau \rrbracket)))$$

#### Call-by-need Closure-conversion Preserves Types

The preservation argument from call-by-name transformations extends simply, because we use type preserving mutable references.

The result translation is unchanged:

$$\mathsf{Res}\llbracket\tau \to \tau'\rrbracket = \exists X. X \times (X \times \mathsf{Val}\llbracket\tau\rrbracket \to \mathsf{Res}\llbracket\tau'\rrbracket)$$

Values are turned into references to thunk closures or results:

$$\mathsf{Val}\llbracket \tau \rrbracket = \texttt{ref} \; (\mathsf{Res}\llbracket \tau \rrbracket + (\exists X. \, X \times (X \to \mathsf{Res}\llbracket \tau \rrbracket)))$$

In the paper, call-by-name closure-conversion is proved correct via a family logical relations.

In the paper, call-by-name closure-conversion is proved correct via a family logical relations. *e.g.* 

 $\operatorname{Val}[\tau] \subseteq \operatorname{Value} \times \operatorname{Value}$ 

In the paper, call-by-name closure-conversion is proved correct via a family logical relations. *e.g.* 

 $\begin{array}{lll} \operatorname{Val}\llbracket\tau\rrbracket & \subseteq & \operatorname{Value} \\ \operatorname{Val}\llbracket\tau\rrbracket & \stackrel{\operatorname{def}}{=} & \{((\Sigma, M), \operatorname{pack}(V'_e, V'_f)) \mid (\langle\Sigma \parallel M\rangle, \langle\varepsilon \parallel V'_f \ V'_e\rangle) \in \llbracket\tau\rrbracket\} \end{array}$ 

In the paper, call-by-name closure-conversion is proved correct via a family logical relations. *e.g.* 

 $\begin{array}{lll} \operatorname{Val}\llbracket\tau\rrbracket & \subseteq & \operatorname{Value} \\ \operatorname{Val}\llbracket\tau\rrbracket & \stackrel{\operatorname{def}}{=} & \{((\Sigma, M), \operatorname{pack}(V'_e, V'_f)) \mid (\langle \Sigma \parallel M \rangle, \langle \varepsilon \parallel V'_f \mid V'_e \rangle) \in \llbracket\tau\rrbracket\} \end{array}$ 

Call-by-need must consider values that are in and depend on a heap  $\Phi\colon$ 

In the paper, call-by-name closure-conversion is proved correct via a family logical relations. *e.g.* 

 $\begin{array}{lll} \operatorname{Val}\llbracket\tau\rrbracket & \subseteq & \operatorname{Value} \\ \operatorname{Val}\llbracket\tau\rrbracket & \stackrel{\operatorname{def}}{=} & \{((\Sigma, M), \operatorname{pack}(V'_e, V'_f)) \mid (\langle\Sigma \parallel M\rangle, \langle\varepsilon \parallel V'_f \ V'_e\rangle) \in \llbracket\tau\rrbracket\} \end{array}$ 

Call-by-need must consider values that are in and depend on a heap  $\Phi\colon$ 

$$\begin{aligned} \operatorname{Val}[\tau](\Phi, \Phi) &\stackrel{\operatorname{def}}{=} & \{ ((\Sigma, M), \operatorname{inr} (\operatorname{pack} (V'_e, V'_f))) \\ & | (\langle \Phi \parallel \Sigma \parallel M \rangle, \langle \Phi \parallel \varepsilon \parallel V'_f V'_e \rangle) \in [\![\tau] ] \} \end{aligned}$$

In the paper, call-by-name closure-conversion is proved correct via a family logical relations. *e.g.* 

 $\begin{array}{lll} \operatorname{Val}\llbracket\tau\rrbracket & \subseteq & \operatorname{Value} \\ \operatorname{Val}\llbracket\tau\rrbracket & \stackrel{\operatorname{def}}{=} & \{((\Sigma, M), \operatorname{pack}(V'_e, V'_f)) \mid (\langle\Sigma \parallel M\rangle, \langle\varepsilon \parallel V'_f \ V'_e\rangle) \in \llbracket\tau\rrbracket\} \end{array}$ 

Call-by-need must consider values that are in and depend on a heap  $\Phi\colon$ 

$$\begin{aligned} \operatorname{Val}[\![\tau]\!](\Phi, \Phi) &\stackrel{\text{def}}{=} & \{ ((\Sigma, M), \operatorname{inr}(\operatorname{pack}(V'_e, V'_f))) \\ & \mid (\langle \Phi \parallel \Sigma \parallel M \rangle, \langle \Phi \parallel \varepsilon \parallel V'_f \mid V'_e \rangle) \in [\![\tau]\!] \} \\ & \cup \\ & \{ ((\Sigma, \lambda x. M), \operatorname{inl} V) \\ & \mid (\langle \Phi \parallel \Sigma \parallel \lambda x. M \rangle, \langle \Phi \parallel \varepsilon \parallel V \rangle) \in [\![\tau]\!] \} \end{aligned}$$

In the paper, call-by-name closure-conversion is proved correct via a family logical relations. *e.g.* 

 $\begin{array}{lll} \operatorname{Val}\llbracket\tau\rrbracket & \subseteq & \operatorname{Value} \\ \operatorname{Val}\llbracket\tau\rrbracket & \stackrel{\operatorname{def}}{=} & \{((\Sigma, M), \operatorname{pack}(V'_e, V'_f)) \mid (\langle\Sigma \parallel M\rangle, \langle\varepsilon \parallel V'_f \ V'_e\rangle) \in \llbracket\tau\rrbracket\} \end{array}$ 

Call-by-need must consider values that are in and depend on a heap  $\Phi\colon$ 

$$\begin{aligned} \operatorname{Val}\llbracket \tau \rrbracket(\Phi, \Phi) &\stackrel{\operatorname{def}}{=} & \{ ((\Sigma, M), \operatorname{inr} (\operatorname{pack} (V'_e, V'_f))) \\ & \mid (\langle \Phi \parallel \Sigma \parallel M \rangle, \langle \Phi \parallel \varepsilon \parallel V'_f \mid V'_e \rangle) \in \llbracket \tau \rrbracket \} \\ & \cup \\ & \{ ((\Sigma, \lambda x. M), \operatorname{inl} V) \\ & \mid (\langle \Phi \parallel \Sigma \parallel \lambda x. M \rangle, \langle \Phi \parallel \varepsilon \parallel V \rangle) \in \llbracket \tau \rrbracket \} \end{aligned}$$

Is this sufficient for a call-by-need language?

let 
$$x = (2+1)$$
 in  $x + x$ 

The heap is different between the first and second times that x is accessed.

let 
$$x = (2+1)$$
 in  $x + x$ 

The heap is different between the first and second times that x is accessed.

For correctness, we **conjecture** that there is a notion of related future heaps  $(\Phi, \Phi) \sqsubseteq (\Phi', \Phi')$  such that:

let 
$$x = (2+1)$$
 in  $x + x$ 

The heap is different between the first and second times that x is accessed.

For correctness, we **conjecture** that there is a notion of related future heaps  $(\Phi, \Phi) \sqsubseteq (\Phi', \Phi')$  such that:

If  $(\mathbf{V}, \mathbf{V}) \in \operatorname{Val}[[\tau]](\Phi, \Phi)$  and  $(\Phi, \Phi) \sqsubseteq (\Phi', \Phi')$ , then  $(\mathbf{V}, \mathbf{V}) \in \operatorname{Val}[[\tau]](\Phi', \Phi')$ .

let 
$$x = (2+1)$$
 in  $x + x$ 

The heap is different between the first and second times that x is accessed.

For correctness, we **conjecture** that there is a notion of related future heaps  $(\Phi, \Phi) \sqsubseteq (\Phi', \Phi')$  such that:

If 
$$(V, V) \in \operatorname{Val}[\tau](\Phi, \Phi)$$
 and  $(\Phi, \Phi) \sqsubseteq (\Phi', \Phi')$ ,  
then  $(V, V) \in \operatorname{Val}[\tau](\Phi', \Phi')$ .

Such a notion of future heaps applies to a more general notion of memoization with an explicit heap.

## **Partial Closure-conversion**

We wish to include the lower-level notion of closures in our compiler's intermediate language

We wish to include the lower-level notion of closures in our compiler's intermediate language **which is lazy**.

let 
$$x = y + 1$$
 in  $x + x$ 

let 
$$x = y + 1$$
 in  $x + x$ 

To introduce the closure x into the language, we introduce a strict closure binding x:

$$let [\$x] = pack (y, \lambda[y], y + 1) in$$

$$let x = (unpack \$x as (e, f) in f[e]) in$$

$$x + x$$

let 
$$x = y + 1$$
 in  $x + x$ 

To introduce the closure x into the language, we introduce a strict closure binding x:

$$let [\$x] = pack (y, \lambda[y], y + 1) in$$

$$let x = (unpack \$x as (e, f) in f[e]) in$$

$$x + x$$

The wrapper (*i.e.* x = ...) is handed off to the lazy runtime.

let 
$$x = y + 1$$
 in  $x + x$ 

To introduce the closure x into the language, we introduce a strict closure binding x:

$$let [\$x] = pack (y, \lambda[y], y + 1) in$$

$$let x = (unpack \$x as (e, f) in f[e]) in$$

$$x + x$$

The wrapper (*i.e.* x = ...) is handed off to the lazy runtime.

This is the same idea as how strict unboxed types are introduced, in Haskell compiler's core.

The intermediate language must include:

The intermediate language must include:

closed functions

The intermediate language must include:

- closed functions
- strict data

The intermediate language must include:

- closed functions
- strict data
- strict let-expressions



- Closure-conversion is not **useful** if we use non-strict data.
- Establishing the correctness of call-by-need closure-conversion depends on a notion of valid future heaps.

- Closure-conversion is not **useful** if we use non-strict data.
- Establishing the correctness of call-by-need closure-conversion depends on a notion of valid future heaps.
- Partial closure-conversion allows us to capture closures and still be lazy.

- Closure-conversion is not **useful** if we use non-strict data.
- Establishing the correctness of call-by-need closure-conversion depends on a notion of valid future heaps.
- Partial closure-conversion allows us to capture closures and still be lazy.

Future work:

- Closure-conversion is not **useful** if we use non-strict data.
- Establishing the correctness of call-by-need closure-conversion depends on a notion of valid future heaps.
- Partial closure-conversion allows us to capture closures and still be lazy.

Future work:

Elaborate heap-based reasoning about memoization.

- Closure-conversion is not **useful** if we use non-strict data.
- Establishing the correctness of call-by-need closure-conversion depends on a notion of valid future heaps.
- Partial closure-conversion allows us to capture closures and still be lazy.

Future work:

- Elaborate heap-based reasoning about memoization.
- Explore practical benefits of partial closure-conversion.

- Closure-conversion is not **useful** if we use non-strict data.
- Establishing the correctness of call-by-need closure-conversion depends on a notion of valid future heaps.
- Partial closure-conversion allows us to capture closures and still be lazy.

Future work:

- Elaborate heap-based reasoning about memoization.
- Explore practical benefits of partial closure-conversion.

# Non-strict closures are strict.