Strictly Capturing Non-strict Closures

Zachary J. Sullivan, Paul Downen, and Zena M. Ariola
University of Oregon

PEPM ’'21, January 18-19, 2021, Virtual

Higher-order Functions

Higher-order Functions

let x=(lety=2+11in Az.y)in (x3)+(x 4)

Higher-order Functions

let x=(lety=2+1in Az.y)in(x3)+(x4)

e

N X< |[X

W Ww|lWw

Higher-order Functions

let x=(lety=2+1in Az.y)in(x3)+(x4)

e

N X< |[X

W Ww|lWw

Pairs of environment and code are closures.

Higher-order Functions

let x=(lety=2+1in Az.y)in(x3)+(x4)

e

N XXX
W Ww|lWw

Pairs of environment and code are closures.
Here, they are a feature of the runtime system.

In Compilation

What if our compiler target language does not
automatically create closures?

In Compilation

What if our compiler target language does not
automatically create closures?

In Compilation

What if our compiler target language does not
automatically create closures?

In Compilation

What if our compiler target language does not
automatically create closures?

eg C

Solution: make closures explicit in the syntax

Closure-conversion

Closure-conversion

Closure-conversion transforms a language supporting open
functions into one that has only closed functions.

Closure-conversion

Closure-conversion transforms a language supporting open
functions into one that has only closed functions.

It is used in Scheme's Rabbit and Orbit compilers, and the SML
New Jersey compiler.

Closure-conversion

Closure-conversion transforms a language supporting open
functions into one that has only closed functions.

It is used in Scheme's Rabbit and Orbit compilers, and the SML
New Jersey compiler. Call-by-value compilers

Closure-conversion

Closure-conversion transforms a language supporting open
functions into one that has only closed functions.

It is used in Scheme's Rabbit and Orbit compilers, and the SML
New Jersey compiler. Call-by-value compilers

But what about Haskell?

Contributions

Contributions

» Specify non-strict closure-conversions:
e call-by-name
e call-by-need

Contributions

» Specify non-strict closure-conversions:
e call-by-name
e call-by-need

Strictness is an essential aspect of useful closure-conversion.

Contributions

» Specify non-strict closure-conversions:
e call-by-name
e call-by-need

Strictness is an essential aspect of useful closure-conversion.

» We propose partial closure-conversion, which allows closures
to be introduced locally instead of as a total transformation.

Closures in Strict Languages

Closures in Strict Evaluation

let x=(let y=2+1in Az.y) in (x3) +(x 4)

Closures in Strict Evaluation
let x=(lety=2+11in Az.y) in (x3) +(x 4)

Capturing a closure:

Closures in Strict Evaluation
let x=(lety=2+11in Az.y) in (x3) +(x 4)

Capturing a closure:

M) b (T, M) bam

{3/y} I Az.y) 4 ({3/y}, Az y)

Closures in Strict Evaluation
let x=(lety=2+11in Az.y) in (x3) +(x 4)

Capturing a closure:

M) b (T, M) bam

{3/y} I Az.y) 4 ({3/y}, Az y)

Entering a closure:

Closures in Strict Evaluation
let x=(lety=2+11in Az.y) in (x3) +(x 4)

Capturing a closure:

M) b (T, M) bam

{3/y} I Az.y) 4 ({3/y}, Az y)
Entering a closure:
(T ML (ML) (ZINMIEW (X W/ LV
MmN}V

App

Closures in Strict Evaluation
let x=(lety=2+11in Az.y) in (x3) +(x 4)

Capturing a closure:

M) b (T, M) bam

{3/y} I Az.y) 4 ({3/y}, Az y)
Entering a closure:
(T ML (ML) (ZINMIEW (X W/ LV
MmN}V

App

(Bl Tz y)/x [4 (Blyhazy) ({(B3)y.3/z} [y) 43

(({3/y}Az.y)/x | x3) 43

Closures in Strict Evaluation
let x=(lety=2+11in Az.y) in (x3) +(x 4)

Capturing a closure:

M) b (T, M) bam

{3/y} I Az.y) 4 ({3/y}, Az y)
Entering a closure:
(T ML (ML) (ZINMIEW (X W/ LV
MmN}V

App

(Bl Tz y)/x [4 (Blyhazy) ({(B3)y.3/z} [y) 43

(({3/y}Az.y)/x | x3) 43

Strict Closure-conversion

let x=(let y=2+1in Az.y) in (x3) +(x 4)

Strict Closure-conversion

let x=(let y=2+1in Az.y) in (x3) +(x 4)

is closure-converted to the following:

Strict Closure-conversion

let x=(let y=2+1in Az.y) in (x3) +(x 4)
is closure-converted to the following:
let x = (let y =2+1 in pack (y,A(y,2).y))

in (unpack x as (e,f) in f (e, 3)) +
(unpack x as (e, f) in f (e,4))

Strict Closure-conversion

let x=(let y=2+1in Az.y) in (x3) +(x 4)

is closure-converted to the following:

let x = (let y =2+1 in pack (y,A(y,2).y))
in (unpack x as (e,f) in f (e, 3)) +
(unpack x as (e, f) in f (e, 4))

How can we run this program?

Semantics of Target Language

let x = (let y =2+ 1 in pack (y,A(y,2).y))
in (unpack x as (e,f) in f (e, 3)) +
(unpack x as (e, f) in f (e,4))

Semantics of Target Language

let x = (let y =2+ 1 in pack (y,A(y,2).y))
in (unpack x as (e, f) in f (e,3)) +
(unpack x as (e, f) in f (e, 4))

Functions do not need to capture free variables:

Semantics of Target Language

let x = (let y =2+ 1 in pack (y,A(y,2).y))
in (unpack x as (e, f) in f (e,3)) +
(unpack x as (e, f) in f (e, 4))

Functions do not need to capture free variables:

/
(T [Ax. M) § ax. M F2m

Semantics of Target Language

let x = (let y =2+ 1 in pack (y,A(y,2).y))
in (unpack x as (e, f) in f (e,3)) +
(unpack x as (e, f) in f (e, 4))

Functions do not need to capture free variables:

/
(T [Ax. M) § ax. M F2m

Applications do not need unpack to them:

Semantics of Target Language

let x = (let y =2+ 1 in pack (y,A(y,2).y))
in (unpack x as (e, f) in f (e,3)) +
(unpack x as (e, f) in f (e, 4))

Functions do not need to capture free variables:

/
(T [Ax. M) § ax. M F2m

Applications do not need unpack to them:

EIMU AL (SIMIW (WX [0V
EMN) bV App

~

Semantics of Target Language

let x = (let y =2+ 1 in pack (y,A(y,2).y))
in (unpack x as (e, f) in f (e,3)) +
(unpack x as (e, f) in f (e, 4))

Functions do not need to capture free variables:

/
(T [Ax. M) § ax. M F2m

Applications do not need unpack to them:

EIMU AL (SIMIW (WX [0V
EMN) bV App

~

Useful Closure-conversion

10

Useful Closure-conversion

After closure-conversion, the program does not need
a runtime that automatically creates closures.

10

Closures in Non-strict
Languages

11

More closures for non-strict languages

12

More closures for non-strict languages

let x=11in (let y = x+2 in (let x =3 in y))

12

More closures for non-strict languages

let x=11in (let y = x+2 in (let x =3 in y))

12

More closures for non-strict languages

let x=11in (let y = x+2 in (let x =3 in y))

Non-strict languages create thunk closures in addition to
function closures.

12

Closures in Call-by-name Languages

13

Closures in Call-by-name Evaluation

let x=11in (let y = x+2 in (let x =3 in y))

14

Closures in Call-by-name Evaluation

let x=11in (let y = x+2 in (let x =3 in y))

Capturing a thunk closure:

14

Closures in Call-by-name Evaluation

let x=11in (let y = x+2 in (let x =3 in y))

Capturing a thunk closure:

(X, (5, M)/x | N) IR
T [let x=Min N) I R -

14

Closures in Call-by-name Evaluation

let x=11in (let y = x+2 in (let x =3 in y))

Capturing a thunk closure:

(X, (Z,M)/x || N) IR
T [let x=Min N) I R -

(../x, ({---/x}, x+2) /y||let x=3in y) | 3
(.../x||lety=x+2 in (let x=31in y)) {3

14

Closures in Call-by-name Evaluation

let x=11in(let y = x+2 in (let x=31in y))

Entering a thunk closure:

15

Closures in Call-by-name Evaluation

let x=11in(let y = x+2 in (let x=31in y))

Entering a thunk closure:

)= EM) MR
xR

Var

15

Closures in Call-by-name Evaluation

let x=11in(let y = x+2 in (let x=31in y))

Entering a thunk closure:

)= EM) MR
xR

Var

(0. D/x | x52) 43

({1 0/x (EELD)/xh x+2) [y, ({- - /x- vy 3)/x M y) 43

15

Call-by-name Closure-conversion

let x=11in(let y = x+2 in (let x=3in y))

16

Call-by-name Closure-conversion

let x=11in(let y = x+2 in (let x=3in y))

closures converts to:

16

Call-by-name Closure-conversion

let x=11in(let y = x+2 in (let x=3in y))
closures converts to:
let x = pack ((),A().1) in
let y = pack (x, Ax. (unpack x as (e,f) in f e) +2) in
let x = pack ((x,y),A(x,y).3) in
unpack y as (e,f) in f e

16

Call-by-name Closure-conversion

let x=11in(let y = x+2 in (let x=3in y))
closures converts to:

let x = pack ((),A().1) in
let y = pack (x, Ax. (unpack x as (e,f) in f e) +2) in
let x = pack ((x,y),A(x,y).3) in
unpack y as (e,f) in f e

How can we run this program?

16

Call-by-name Closure-conversion

let x=11in(let y = x+2 in (let x=3in y))
closures converts to:
let x = pack ((),A().1) in
let y = pack (x, Ax. (unpack x as (e,f) in f e) +2) in
let x = pack ((x,y),A(x,y).3) in
unpack y as (e,f) in f e

How can we run this program?
The natural choice is a call-by-name language with data.

16

Target Language for Call-by-name Closure-conversion

17

Target Language for Call-by-name Closure-conversion

Non-strict data types are not evaluated until forced by their
context.

17

Target Language for Call-by-name Closure-conversion

Non-strict data types are not evaluated until forced by their
context.

For instance, existential data types:

17

Target Language for Call-by-name Closure-conversion

Non-strict data types are not evaluated until forced by their
context.

For instance, existential data types:

Pack
(% || pack M) | (Z, pack M)

17

Target Language for Call-by-name Closure-conversion

Non-strict data types are not evaluated until forced by their
context.

For instance, existential data types:

Pack
(% || pack M) | (Z, pack M)

(X M) (X,pack L) (%, (X, L)/x[IN) 4 R
(¥ || unpack M as x in N) || R

Unpack

17

Target Language for Call-by-name Closure-conversion

Non-strict data types are not evaluated until forced by their
context.

For instance, existential data types:

Pack
(% || pack M) | (Z, pack M)

(X M) (X,pack L) (%, (X, L)/x[IN) 4 R
(¥ || unpack M as x in N) || R

Unpack

Non-strict data types do not remove the need for
closures in our runtime.

17

Target Language for Call-by-name Closure-conversion

Non-strict data types are not evaluated until forced by their
context.

For instance, existential data types:

Pack
(% || pack M) | (Z, pack M)

(X M) (X,pack L) (%, (X, L)/x[IN) 4 R
(¥ || unpack M as x in N) || R

Unpack

Non-strict data types do not remove the need for
closures in our runtime.
Neither do non-strict functions, nor let-expressions

17

Target Language for Call-by-name Closure-conversion

What if we simply remove the closure constructing aspect of
non-strict data?

18

Target Language for Call-by-name Closure-conversion

What if we simply remove the closure constructing aspect of
non-strict data?

Pack
(X || pack M) | pack M

18

Target Language for Call-by-name Closure-conversion

What if we simply remove the closure constructing aspect of
non-strict data?

Pack
(X || pack M) | pack M

(ZIM)§ pack L (X,L/x[|N)|R
(X || unpack M as x in N) § R

Unpack

18

Target Language for Call-by-name Closure-conversion

What if we simply remove the closure constructing aspect of
non-strict data?

Pack
(X || pack M) | pack M

(X || M) ¥ pack L (%, L/x || N) IR
(X || unpack M as x in N) § R

Unpack

(pack (), A()- 1)/x, pack (X, Ax. -.) /y || Let x = pack ((x,¥), A(x,¥).3) in (-..)) U3

(pack ((), Ax.1)/x || let y = pack (x, Ax. ...) in (let x = pack ((x,y), A(x,y).3)in (...))) 43

Target Language for Call-by-name Closure-conversion

What if we simply remove the closure constructing aspect of
non-strict data?

Pack
(X || pack M) | pack M

(Z||M)| pack L (X, L/x||N)JR

Unpack
(X || unpack M as x in N) § R P
(pack () A()- 1)/, pack (x, Ax. +++) /y Il 1et x = pack ((x, ¥), A(x,¥)-3) in (-..)) 43
(pack ((), Ax.1)/x || let y = pack (x, Ax. ...) in (let x = pack ((x,y), A(x,y).3)in (...))) 43

Using non-strict data without a closure constructing
target language is wrong.

Target Language for Call-by-name Closure-conversion

19

Target Language for Call-by-name Closure-conversion

We didn’t have this problem for call-by-value closure-conversion.

19

Target Language for Call-by-name Closure-conversion

We didn’t have this problem for call-by-value closure-conversion.
Call-by-value data types do not require closures!

19

Target Language for Call-by-name Closure-conversion

We didn’t have this problem for call-by-value closure-conversion.
Call-by-value data types do not require closures!

MV
(X || pack M) | pack V

Pack

19

Target Language for Call-by-name Closure-conversion

We didn’t have this problem for call-by-value closure-conversion.
Call-by-value data types do not require closures!

MV
(X || pack M) | pack V

Pack

(Z (M) § pack V. (%, V/x[N) IR
(¥ || unpack M as x in N) || R

Unpack

19

Target Language for Call-by-name Closure-conversion

Fortunately, the closure-conversion transformation also performed
a thunking transformation.

20

Target Language for Call-by-name Closure-conversion

Fortunately, the closure-conversion transformation also performed
a thunking transformation.

let x = pack ((),A(). 1) in
let y = pack (x, Ax. (unpack x as (e,f) in f e) +2) in
let x = pack ((x,y),A(x,y). 3) in
unpack y as (e,f) in f e

20

Target Language for Call-by-name Closure-conversion

Fortunately, the closure-conversion transformation also performed
a thunking transformation.

let x = pack ((),A(). 1) in
let y = pack (x, Ax. (unpack x as (e,f) in f e) +2) in
let x = pack ((x,y),A(x,y). 3) in
unpack y as (e,f) in f e

Call-by-name closure-conversion preserves semantics in a
call-by-value target language.

20

Target Language for Call-by-name Closure-conversion

Fortunately, the closure-conversion transformation also performed
a thunking transformation.

let x = pack ((),A(). 1) in
let y = pack (x, Ax. (unpack x as (e,f) in f e) +2) in
let x = pack ((x,y),A(x,y). 3) in
unpack y as (e,f) in f e

Call-by-name closure-conversion preserves semantics in a
call-by-value target language.

20

Target Language for Call-by-name Closure-conversion

Which language do we run our call-by-name closure-converted
program?

21

Target Language for Call-by-name Closure-conversion

Which language do we run our call-by-name closure-converted

program?

| Closure ignorant | Correct | Useful

Runtime
call-by-name v
call-by-name’ v
call-by-value v

v v v

call-by-value’

21

Target Language for Call-by-name Closure-conversion

Which language do we run our call-by-name closure-converted

program?

Runtime | Closure ignorant | Correct | Useful

call-by-name v
call-by-name’ v

call-by-value v
call-by-value’ v v v

The target for call-by-name closure-conversion
should be strict.

21

Call-by-name Closure-conversion Preserves Types

22

Call-by-name Closure-conversion Preserves Types

Strict closure-conversion preserves types by hiding environments
with existential types (pack expressions).

22

Call-by-name Closure-conversion Preserves Types

Strict closure-conversion preserves types by hiding environments
with existential types (pack expressions).

eg Ax.x+xand Ax.x+y

22

Call-by-name Closure-conversion Preserves Types

Strict closure-conversion preserves types by hiding environments
with existential types (pack expressions).

eg Ax.x+xand Ax.x+y

[int — int] = 3X. X x (X X int — int)

22

Call-by-name Closure-conversion Preserves Types

Strict closure-conversion preserves types by hiding environments
with existential types (pack expressions).

eg Ax.x+xand Ax.x+y

[int — int] = 3X. X x (X X int — int)

Type preservation for call-by-name requires two type translations:

22

Call-by-name Closure-conversion Preserves Types

Strict closure-conversion preserves types by hiding environments
with existential types (pack expressions).

eg Ax.x+xand Ax.x+y

[int — int] = 3X. X x (X X int — int)

Type preservation for call-by-name requires two type translations:

For results

22

Call-by-name Closure-conversion Preserves Types

Strict closure-conversion preserves types by hiding environments
with existential types (pack expressions).

eg Ax.x+xand Ax.x+y
[int — int] = 3X. X x (X X int — int)

Type preservation for call-by-name requires two type translations:

For results

Res[r — 7'] = 3X. X x (X x Val[r] — Res[7])

22

Call-by-name Closure-conversion Preserves Types

Strict closure-conversion preserves types by hiding environments
with existential types (pack expressions).

eg Ax.x+xand Ax.x+y

[int — int] = 3X. X x (X X int — int)

Type preservation for call-by-name requires two type translations:

For results

Res[r — 7'] = 3X. X x (X x Val[r] — Res[7])

For values, turned into thunk closures

22

Call-by-name Closure-conversion Preserves Types

Strict closure-conversion preserves types by hiding environments
with existential types (pack expressions).

eg Ax.x+xand Ax.x+y
[int — int] = 3X. X x (X X int — int)

Type preservation for call-by-name requires two type translations:

For results

Res[r — 7'] = 3X. X x (X x Val[r] — Res[7])

For values, turned into thunk closures

Val[r] = 3X. X x (X — Res[7])

22

Call-by-name Closure-conversion Preserves Types

Strict closure-conversion preserves types by hiding environments
with existential types (pack expressions).

eg Ax.x+xand Ax.x+y
[int — int] = 3X. X x (X X int — int)

Type preservation for call-by-name requires two type translations:

For results

Res[r — 7'] = 3X. X x (X x Val[r] — Res[7])

For values, turned into thunk closures

Val[r] = 3X. X x (X — Res[7])

22

Closures in Call-by-need Languages

23

Sharing

let x= (2+1) in x +x

24

Sharing

let x= (241) in x +x

for which call-by-name closure-conversion yields:

let x = pack ((),A()-2+1) in
(unpack x as (e,f) in f e) + (unpack x as (e,f) in f e)

24

Sharing

let x= (241) in x +x

for which call-by-name closure-conversion yields:

let x = pack ((),A()-2+1) in
(unpack x as (e,f) in f e) + (unpack x as (e,f) in f e)

The evaluation of 2 + 1 will be performed twice in a call-by-value
target language.

24

Sharing

let x= (241) in x +x

for which call-by-name closure-conversion yields:

let x = pack ((),A()-2+1) in
(unpack x as (e,f) in f e) + (unpack x as (e,f) in f e)

The evaluation of 2 + 1 will be performed twice in a call-by-value
target language.

Sharing has been lost!

24

Target Language for Call-by-need Closure-conversion

Thunk closures must be updatable with their evaluation result.

25

Target Language for Call-by-need Closure-conversion

Thunk closures must be updatable with their evaluation result.

Like call-by-value implementations of delay and force, we use:

25

Target Language for Call-by-need Closure-conversion

Thunk closures must be updatable with their evaluation result.

Like call-by-value implementations of delay and force, we use:

» Mutable references, to store and update

25

Target Language for Call-by-need Closure-conversion

Thunk closures must be updatable with their evaluation result.

Like call-by-value implementations of delay and force, we use:
» Mutable references, to store and update

» Sum types, to distinguish unevaluated thunks from their
evaluation result

25

Target Language for Call-by-need Closure-conversion

Thunk closures must be updatable with their evaluation result.

Like call-by-value implementations of delay and force, we use:
» Mutable references, to store and update

» Sum types, to distinguish unevaluated thunks from their
evaluation result

25

Call-by-need Closure-conversion

let x= (24+1) in x +x

26

Call-by-need Closure-conversion

let x= (2+1) in x +x

transformed with a call-by-need closure-conversion yields:

let x = store (pack ((),A().2+ 1)) in

(memo x) + (memo x)

26

Call-by-need Closure-conversion

let x= (2+1) in x +x

transformed with a call-by-need closure-conversion yields:

let x = store (pack ((),A().2+ 1)) in

(memo x) + (memo x)

Where store and memo are the following macros:

26

Call-by-need Closure-conversion

let x= (2+1) in x +x

transformed with a call-by-need closure-conversion yields:

let x = store (pack ((),A().2+ 1)) in

(memo x) + (memo x)

Where store and memo are the following macros:

store M ¥ new (inr M)

memo x & case Ix of
inlv —v
inr p —
unpack p as (e, f) in
let v=1Fein

let . =(x:=inlv)inv

26

Call-by-need Closure-conversion Preserves Types

The preservation argument from call-by-name transformations
extends simply, because we use type preserving mutable references.

27

Call-by-need Closure-conversion Preserves Types

The preservation argument from call-by-name transformations
extends simply, because we use type preserving mutable references.

The result translation is unchanged:

27

Call-by-need Closure-conversion Preserves Types

The preservation argument from call-by-name transformations
extends simply, because we use type preserving mutable references.

The result translation is unchanged:

Res[r — 7'] = 3X. X x (X x Val[r] — Res[7])

27

Call-by-need Closure-conversion Preserves Types

The preservation argument from call-by-name transformations
extends simply, because we use type preserving mutable references.

The result translation is unchanged:

Res[r — 7'] = 3X. X x (X x Val[r] — Res[7])

Values are turned into references to thunk closures or results:

27

Call-by-need Closure-conversion Preserves Types

The preservation argument from call-by-name transformations
extends simply, because we use type preserving mutable references.

The result translation is unchanged:

Res[r — 7'] = 3X. X x (X x Val[r] — Res[7])

Values are turned into references to thunk closures or results:

Val[r] = ref (Res[r] + (3X. X x (X — Res[7])))

27

Call-by-need Closure-conversion Preserves Types

The preservation argument from call-by-name transformations
extends simply, because we use type preserving mutable references.

The result translation is unchanged:

Res[r — 7'] = 3X. X x (X x Val[r] — Res[7])

Values are turned into references to thunk closures or results:

Val[r] = ref (Res[r] + (3X. X x (X — Res[7])))

27

Call-by-need Semantic Preservation

In the paper, call-by-name closure-conversion is proved correct via
a family logical relations.

28

Call-by-need Semantic Preservation

In the paper, call-by-name closure-conversion is proved correct via
a family logical relations. e.g.

Val[r] C Value x Value

28

Call-by-need Semantic Preservation

In the paper, call-by-name closure-conversion is proved correct via
a family logical relations. e.g.

Val[r] C Value x Value
Vallr] % {((Z. M), pack (V, V) | ((Z | M), (|| Vi V&) € [7]}

28

Call-by-need Semantic Preservation

In the paper, call-by-name closure-conversion is proved correct via
a family logical relations. e.g.

Val[r] C Value x Value
Val[r] € {((Z. M), pack (V{, V) | ((Z || M), (e || V} V) € [r]}

Call-by-need must consider values that are in and depend on a
heap ¢:

28

Call-by-need Semantic Preservation

In the paper, call-by-name closure-conversion is proved correct via
a family logical relations. e.g.

Val[r] C Value x Value
Val[r] € {((Z. M), pack (V{, V) | ((Z || M), (e || V} V) € [r]}

Call-by-need must consider values that are in and depend on a
heap ¢:

Val[r](®,®) € {((Z, M), inr (pack(V, V{)))
[(@[M) (@l ell Vi Ve))elr]}

28

Call-by-need Semantic Preservation

In the paper, call-by-name closure-conversion is proved correct via
a family logical relations. e.g.

Val[r] C Value x Value
Val[r] = {(Z. M), pack (V& VA)) [(|| M), (e || Vi V) €[]}
Call-by-need must consider values that are in and depend on a

heap ¢:

Val[r](®,®) € {((Z, M), inr (pack(V, V{)))
| (& | = [M), (> |lell V¥ V) elr]}

{((z Ax. M), inl V)
| (P[] Ax. M), (@ |l el V) €[]}

28

Call-by-need Semantic Preservation

In the paper, call-by-name closure-conversion is proved correct via
a family logical relations. e.g.

Val[r] C Value x Value
Val[r] = {(Z. M), pack (V& VA)) [(|| M), (e || Vi V) €[]}
Call-by-need must consider values that are in and depend on a

heap ¢:

Val[r](®,®) € {((Z, M), inr (pack(V, V{)))
|(¢HZH M), (@ |l e |l V¥ Vo)) €[]}

{((Z)\ M), inl V)
| (=[] Ax. M), (® [e || V) € [}

Is this sufficient for a call-by-need language?

28

Call-by-need Semantic Preservation

let x= (2+1) in x +x

The heap is different between the first and second times that x is
accessed.

29

Call-by-need Semantic Preservation

let x= (2+1) in x +x
The heap is different between the first and second times that x is

accessed.

For correctness, we conjecture that there is a notion of related
future heaps (¢, ®) C (¢', ®’) such that:

29

Call-by-need Semantic Preservation

let x= (2+1) in x +x
The heap is different between the first and second times that x is

accessed.

For correctness, we conjecture that there is a notion of related
future heaps (¢, ®) C (¢', ®’) such that:

If (V, V) € Val[7](®,) and (¢, ®) T (¢/, d'),
then (V, V) € Val[7](®', d').

29

Call-by-need Semantic Preservation

let x= (2+1) in x +x
The heap is different between the first and second times that x is

accessed.

For correctness, we conjecture that there is a notion of related
future heaps (¢, ®) C (¢', ®’) such that:

If (V, V) € Val[7](®,) and (¢, ®) T (¢/, d'),
then (V, V) € Val[7](®', d').

Such a notion of future heaps applies to a more general notion
of memoization with an explicit heap.

29

Partial Closure-conversion

30

Partial Closure-conversion

Useful closure-conversion is done at the end of the compilation
pipeline because of the switch to call-by-value.

31

Partial Closure-conversion

Useful closure-conversion is done at the end of the compilation
pipeline because of the switch to call-by-value.

31

Partial Closure-conversion

Useful closure-conversion is done at the end of the compilation
pipeline because of the switch to call-by-value.

We wish to include the lower-level notion of closures in our
compiler’s intermediate language

31

Partial Closure-conversion

Useful closure-conversion is done at the end of the compilation
pipeline because of the switch to call-by-value.

We wish to include the lower-level notion of closures in our
compiler’s intermediate language which is lazy.

31

Capturing Closures Locally

let x=y+1 in x +x

32

Capturing Closures Locally

let x=y+1 in x +x

To introduce the closure x into the language, we introduce a strict
closure binding $x:

let [$x] = pack (y,Aly].y +1) in
let x = (unpack $x as (e, f) in f[e]) in
X+ X

32

Capturing Closures Locally

let x=y+1 in x +x

To introduce the closure x into the language, we introduce a strict
closure binding $x:

let [$x] = pack (y,Aly].y +1) in
let x = (unpack $x as (e, f) in f[e]) in
X+ X

The wrapper (i.e. x =...) is handed off to the lazy runtime.

32

Capturing Closures Locally

let x=y+1 in x +x

To introduce the closure x into the language, we introduce a strict
closure binding $x:

let [$x] = pack (y,Aly].y +1) in
let x = (unpack $x as (e, f) in f[e]) in
X+ X

The wrapper (i.e. x =...) is handed off to the lazy runtime.

This is the same idea as how strict unboxed types are introduced,
in Haskell compiler's core.

32

Target Language for Partial Closure-conversion

The intermediate language must include:

33

Target Language for Partial Closure-conversion

The intermediate language must include:

» closed functions

33

Target Language for Partial Closure-conversion

The intermediate language must include:
» closed functions
P strict data

33

Target Language for Partial Closure-conversion

The intermediate language must include:
» closed functions
» strict data
P strict let-expressions

33

34

Summary

35

Summary

» Closure-conversion is not useful if we use non-strict data.

35

Summary

» Closure-conversion is not useful if we use non-strict data.

» Establishing the correctness of call-by-need closure-conversion
depends on a notion of valid future heaps.

35

Summary

» Closure-conversion is not useful if we use non-strict data.

» Establishing the correctness of call-by-need closure-conversion
depends on a notion of valid future heaps.

» Partial closure-conversion allows us to capture closures and still be
lazy.

35

Summary

» Closure-conversion is not useful if we use non-strict data.

» Establishing the correctness of call-by-need closure-conversion
depends on a notion of valid future heaps.

» Partial closure-conversion allows us to capture closures and still be
lazy.

Future work:

35

Summary

» Closure-conversion is not useful if we use non-strict data.

» Establishing the correctness of call-by-need closure-conversion
depends on a notion of valid future heaps.

» Partial closure-conversion allows us to capture closures and still be
lazy.

Future work:

» Elaborate heap-based reasoning about memoization.

35

Summary

» Closure-conversion is not useful if we use non-strict data.

» Establishing the correctness of call-by-need closure-conversion
depends on a notion of valid future heaps.

» Partial closure-conversion allows us to capture closures and still be
lazy.

Future work:
» Elaborate heap-based reasoning about memoization.

» Explore practical benefits of partial closure-conversion.

35

Summary

» Closure-conversion is not useful if we use non-strict data.

» Establishing the correctness of call-by-need closure-conversion
depends on a notion of valid future heaps.

» Partial closure-conversion allows us to capture closures and still be
lazy.

Future work:
» Elaborate heap-based reasoning about memoization.

» Explore practical benefits of partial closure-conversion.

Non-strict closures are strict.

35

	Introduction
	Closures in Strict Languages
	Closures in Non-strict Languages
	Closures in Call-by-name Languages
	Closures in Call-by-need Languages

	Partial Closure-conversion

