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Higher-order Functions

let x = (let y = 2 + 1 in λz . y ) in ( x 3 ) + (x 4)
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Pairs of environment and code are closures.
Here, they are a feature of the runtime system.
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In Compilation

What if our compiler target language does not
automatically create closures?

e.g. C

Solution: make closures explicit in the syntax
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Closure-conversion

Closure-conversion transforms a language supporting open
functions into one that has only closed functions.

It is used in Scheme’s Rabbit and Orbit compilers, and the SML
New Jersey compiler. Call-by-value compilers

But what about Haskell?
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Contributions

I Specify non-strict closure-conversions:
• call-by-name
• call-by-need

Strictness is an essential aspect of useful closure-conversion.

I We propose partial closure-conversion, which allows closures
to be introduced locally instead of as a total transformation.
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Closures in Strict Languages
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Closures in Strict Evaluation

let x = (let y = 2 + 1 in λz . y ) in (x 3) + (x 4)

Capturing a closure:

〈Σ ‖ λx .M〉 ⇓ (Σ, λx .M)
Lam

〈{3/y} ‖ λz . y 〉 ⇓ ({3/y}, λz . y)

Entering a closure:

〈Σ ‖ M〉 ⇓ (Σ′, λx . L) 〈Σ ‖ N〉 ⇓W 〈Σ′,W /x ‖ L〉 ⇓ V

〈Σ ‖ M N〉 ⇓ V
App

...
〈({3/y}, λz . y)/x ‖ x〉 ⇓ ({3/y}, λz . y)

...
〈{3/y , 3/z} ‖ y〉 ⇓ 3

〈({3/y}, λz . y)/x ‖ x 3 〉 ⇓ 3
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Strict Closure-conversion

let x = (let y = 2 + 1 in λz . y ) in (x 3) + (x 4)

is closure-converted to the following:

let x = (let y = 2 + 1 in pack (y , λ(y , z). y) )

in (unpack x as (e, f ) in f (e, 3)) +

(unpack x as (e, f ) in f (e, 4))

How can we run this program?
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Semantics of Target Language

let x = (let y = 2 + 1 in pack (y , λ(y , z). y) )

in (unpack x as (e, f ) in f (e, 3)) +

(unpack x as (e, f ) in f (e, 4))

Functions do not need to capture free variables:

〈Σ ‖ λx .M〉 ⇓ λx .M Lam′

Applications do not need unpack to them:

〈Σ ‖ M〉 ⇓ λx . L 〈Σ ‖ N〉 ⇓W 〈W /x ‖ L〉 ⇓ V

〈Σ ‖ M N〉 ⇓ V
App′
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Useful Closure-conversion

After closure-conversion, the program does not need
a runtime that automatically creates closures.
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Closures in Non-strict
Languages
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More closures for non-strict languages

let x = 1 in (let y = x + 2 in (let x = 3 in y ))

x

y

1
(  , x + 2)

x 3

Non-strict languages create thunk closures in addition to
function closures.
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Closures in Call-by-name Languages
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Closures in Call-by-name Evaluation

let x = 1 in (let y = x + 2 in (let x = 3 in y ))

Capturing a thunk closure:

〈Σ, (Σ,M)/x ‖ N〉 ⇓ R

〈Σ ‖ let x = M in N〉 ⇓ R
Let

...

〈. . . /x , ({. . . /x}, x + 2 ) /y ‖ let x = 3 in y 〉 ⇓ 3

〈. . . /x ‖ let y = x + 2 in (let x = 3 in y )〉 ⇓ 3
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Closures in Call-by-name Evaluation

let x = 1 in (let y = x + 2 in (let x = 3 in y ))

Entering a thunk closure:

Σ(x) = (Σ′,M) 〈Σ′ ‖ M〉 ⇓ R

〈Σ ‖ x〉 ⇓ R
Var

...

〈({}, 1)/x ‖ x + 2 〉 ⇓ 3

〈({}, 1)/x , ({({}, 1)/x}, x + 2 ) /y , ({. . . /x , . . . /y}, 3)/x ‖ y 〉 ⇓ 3
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Call-by-name Closure-conversion

let x = 1 in (let y = x + 2 in (let x = 3 in y ))

closures converts to:

let x = pack ((), λ(). 1) in

let y = pack (x , λx . (unpack x as (e, f ) in f e) + 2) in

let x = pack ((x , y), λ(x , y). 3) in

unpack y as (e, f ) in f e

How can we run this program?
The natural choice is a call-by-name language with data.
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Target Language for Call-by-name Closure-conversion

Non-strict data types are not evaluated until forced by their
context.

For instance, existential data types:

〈Σ ‖ pack M〉 ⇓ (Σ, pack M)
Pack

〈Σ ‖ M〉 ⇓ (Σ′, pack L) 〈Σ, (Σ′, L)/x ‖ N〉 ⇓ R

〈Σ ‖ unpack M as x in N〉 ⇓ R
Unpack

Non-strict data types do not remove the need for
closures in our runtime.

Neither do non-strict functions, nor let-expressions
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Target Language for Call-by-name Closure-conversion
What if we simply remove the closure constructing aspect of
non-strict data?

〈Σ ‖ pack M〉 ⇓ pack M
Pack

〈Σ ‖ M〉 ⇓ pack L 〈Σ, L/x ‖ N〉 ⇓ R

〈Σ ‖ unpack M as x in N〉 ⇓ R
Unpack

.

.

.

〈pack ((), λ(). 1)/x, pack (x, λx. . . . ) /y ‖ let x = pack ((x, y), λ(x, y). 3) in (. . . ) 〉 ⇓ 3

〈pack ((), λx. 1)/x ‖ let y = pack (x, λx. . . . ) in (let x = pack ((x, y), λ(x, y). 3) in (. . . ) )〉 ⇓ 3

Using non-strict data without a closure constructing
target language is wrong.
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Target Language for Call-by-name Closure-conversion

We didn’t have this problem for call-by-value closure-conversion.
Call-by-value data types do not require closures!

〈Σ ‖ M〉 ⇓ V

〈Σ ‖ pack M〉 ⇓ pack V
Pack

〈Σ ‖ M〉 ⇓ pack V 〈Σ,V /x ‖ N〉 ⇓ R

〈Σ ‖ unpack M as x in N〉 ⇓ R
Unpack
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Target Language for Call-by-name Closure-conversion

Fortunately, the closure-conversion transformation also performed
a thunking transformation.

let x = pack ((), λ(). 1 ) in

let y = pack (x , λx . (unpack x as (e, f ) in f e) + 2 ) in

let x = pack ((x , y), λ(x , y). 3 ) in

unpack y as (e, f ) in f e

Call-by-name closure-conversion preserves semantics in a
call-by-value target language.
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Target Language for Call-by-name Closure-conversion

Which language do we run our call-by-name closure-converted
program?

Runtime Closure ignorant Correct Useful
call-by-name X
call-by-name’ X
call-by-value X
call-by-value’ X X X

The target for call-by-name closure-conversion
should be strict.
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Call-by-name Closure-conversion Preserves Types

Strict closure-conversion preserves types by hiding environments
with existential types (pack expressions).

e.g. λx . x + x and λx . x + y

Jint→ intK = ∃X .X × (X × int→ int)

Type preservation for call-by-name requires two type translations:

For results

ResJτ → τ ′K = ∃X .X × (X × ValJτK→ ResJτ ′K)

For values, turned into thunk closures

ValJτK = ∃X .X × (X → ResJτK)
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Closures in Call-by-need Languages

23



Sharing

let x = (2 + 1) in x + x

for which call-by-name closure-conversion yields:

let x = pack ((), λ(). 2 + 1) in

(unpack x as (e, f ) in f e) + (unpack x as (e, f ) in f e)

The evaluation of 2 + 1 will be performed twice in a call-by-value
target language.

Sharing has been lost!
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Target Language for Call-by-need Closure-conversion

Thunk closures must be updatable with their evaluation result.

Like call-by-value implementations of delay and force, we use:

I Mutable references, to store and update

I Sum types, to distinguish unevaluated thunks from their
evaluation result
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Call-by-need Closure-conversion

let x = (2 + 1) in x + x

transformed with a call-by-need closure-conversion yields:

let x = store (pack ((), λ(). 2 + 1)) in

(memo x) + (memo x)

Where store and memo are the following macros:

store M
def
= new (inr M)

memo x
def
= case !x of

inl v → v
inr p →

unpack p as (e, f ) in

let v = f e in

let = (x := inl v) in v

26
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Call-by-need Closure-conversion Preserves Types

The preservation argument from call-by-name transformations
extends simply, because we use type preserving mutable references.

The result translation is unchanged:

ResJτ → τ ′K = ∃X .X × (X × ValJτK→ ResJτ ′K)

Values are turned into references to thunk closures or results:

ValJτK = ref (ResJτK + (∃X .X × (X → ResJτK)))

27
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Call-by-need Semantic Preservation

In the paper, call-by-name closure-conversion is proved correct via
a family logical relations.

e.g.

ValJτK ⊆ Value × Value

ValJτK def
= {((Σ,M), pack (V ′

e ,V
′
f )) | (〈Σ ‖ M〉, 〈ε ‖ V ′

f V ′
e 〉) ∈ JτK}

Call-by-need must consider values that are in and depend on a
heap Φ:

ValJτK(Φ,Φ)
def
= {((Σ,M), inr (pack (V ′

e ,V
′
f )))

| (〈Φ ‖ Σ ‖ M〉, 〈Φ ‖ ε ‖ V ′
f V ′

e 〉) ∈ JτK}
∪
{((Σ, λx .M), inl V )
| (〈Φ ‖ Σ ‖ λx .M〉, 〈Φ ‖ ε ‖ V 〉) ∈ JτK}

Is this sufficient for a call-by-need language?
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Call-by-need Semantic Preservation

let x = (2 + 1) in x + x

The heap is different between the first and second times that x is
accessed.

For correctness, we conjecture that there is a notion of related
future heaps (Φ,Φ) v (Φ′,Φ′) such that:

If (V ,V ) ∈ ValJτK(Φ,Φ) and (Φ,Φ) v (Φ′,Φ′),

then (V ,V ) ∈ ValJτK(Φ′,Φ′).

Such a notion of future heaps applies to a more general notion
of memoization with an explicit heap.
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Useful closure-conversion is done at the end of the compilation
pipeline because of the switch to call-by-value.

We wish to include the lower-level notion of closures in our
compiler’s intermediate language which is lazy.
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Capturing Closures Locally

let x = y + 1 in x + x

To introduce the closure x into the language, we introduce a strict
closure binding $x :

let [$x ] = pack (y , λ[y ]. y + 1) in

let x = (unpack $x as (e, f ) in f [e]) in

x + x

The wrapper (i.e. x = . . . ) is handed off to the lazy runtime.

This is the same idea as how strict unboxed types are introduced,
in Haskell compiler’s core.
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Target Language for Partial Closure-conversion

The intermediate language must include:

I closed functions

I strict data

I strict let-expressions
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Summary

I Closure-conversion is not useful if we use non-strict data.

I Establishing the correctness of call-by-need closure-conversion
depends on a notion of valid future heaps.

I Partial closure-conversion allows us to capture closures and still be
lazy.

Future work:

I Elaborate heap-based reasoning about memoization.

I Explore practical benefits of partial closure-conversion.

Non-strict closures are strict.
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