Strictly Capturing Non-strict Closures

Zachary J. Sullivan, Paul Downen, and Zena M. Ariola
University of Oregon

PEPM ’'21, January 18-19, 2021, Virtual



Higher-order Functions



Higher-order Functions

let x=(lety=2+11in Az.y )in (x3)+(x 4)



Higher-order Functions

let x=(lety=2+1in Az.y )in(x3)+(x4)

e

N X< |[X

W Ww|lWw




Higher-order Functions

let x=(lety=2+1in Az.y )in(x3)+(x4)

e

N X< |[X

W Ww|lWw

Pairs of environment and code are closures.



Higher-order Functions

let x=(lety=2+1in Az.y )in(x3)+(x4)

e

N XXX
W Ww|lWw

Pairs of environment and code are closures.
Here, they are a feature of the runtime system.
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In Compilation

What if our compiler target language does not
automatically create closures?

eg C

Solution: make closures explicit in the syntax
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Closure-conversion transforms a language supporting open
functions into one that has only closed functions.

It is used in Scheme's Rabbit and Orbit compilers, and the SML
New Jersey compiler. Call-by-value compilers

But what about Haskell?
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Contributions

» Specify non-strict closure-conversions:
e call-by-name
e call-by-need

Strictness is an essential aspect of useful closure-conversion.

» We propose partial closure-conversion, which allows closures
to be introduced locally instead of as a total transformation.
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Useful Closure-conversion

After closure-conversion, the program does not need
a runtime that automatically creates closures.
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More closures for non-strict languages

let x=11in (let y = x+2 in (let x =3 in y))

Non-strict languages create thunk closures in addition to
function closures.
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let x=11in(let y = x+2 in (let x=3in y))
closures converts to:
let x = pack ((),A().1) in
let y = pack (x, Ax. (unpack x as (e,f) in f e) +2) in
let x = pack ((x,y),A(x,y).3) in
unpack y as (e,f) in f e

How can we run this program?
The natural choice is a call-by-name language with data.
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(% || pack M) | (Z, pack M)

(X M) (X,pack L) (%, (X, L)/x[IN) 4 R
(¥ || unpack M as x in N) || R

Unpack

Non-strict data types do not remove the need for
closures in our runtime.
Neither do non-strict functions, nor let-expressions

17
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Target Language for Call-by-name Closure-conversion

What if we simply remove the closure constructing aspect of
non-strict data?

Pack
(X || pack M) | pack M

(Z||M)| pack L (X, L/x||N)JR

Unpack
(X || unpack M as x in N) § R P
(pack () A()- 1)/, pack (x, Ax. +++) /y Il 1et x = pack ((x, ¥), A(x,¥)-3) in (-..) ) 43
(pack ((), Ax.1)/x || let y = pack (x, Ax. ...) in (let x = pack ((x,y), A(x,y).3)in (...) )) 43

Using non-strict data without a closure constructing
target language is wrong.
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Target Language for Call-by-name Closure-conversion

Which language do we run our call-by-name closure-converted

program?

Runtime | Closure ignorant | Correct | Useful

call-by-name v
call-by-name’ v

call-by-value v
call-by-value’ v v v

The target for call-by-name closure-conversion
should be strict.
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Sharing

let x= (241) in x +x

for which call-by-name closure-conversion yields:

let x = pack ((),A()-2+1) in
(unpack x as (e,f) in f e) + (unpack x as (e,f) in f e)

The evaluation of 2 + 1 will be performed twice in a call-by-value
target language.

Sharing has been lost!
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transformed with a call-by-need closure-conversion yields:

let x = store (pack ((),A().2+ 1)) in

(memo x) + (memo x)

Where store and memo are the following macros:

store M ¥ new (inr M)

memo x & case Ix of
inlv —v
inr p —
unpack p as (e, f) in
let v=1Fein

let . =(x:=inlv)inv
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Is this sufficient for a call-by-need language?
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Call-by-need Semantic Preservation

let x= (2+1) in x +x
The heap is different between the first and second times that x is

accessed.

For correctness, we conjecture that there is a notion of related
future heaps (¢, ®) C (¢', ®’) such that:

If (V, V) € Val[7](®, ) and (¢, ®) T (¢/, d'),
then (V, V) € Val[7](®', d').

Such a notion of future heaps applies to a more general notion
of memoization with an explicit heap.
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Useful closure-conversion is done at the end of the compilation
pipeline because of the switch to call-by-value.

We wish to include the lower-level notion of closures in our
compiler’s intermediate language which is lazy.
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Capturing Closures Locally

let x=y+1 in x +x

To introduce the closure x into the language, we introduce a strict
closure binding $x:

let [$x] = pack (y,Aly].y +1) in
let x = (unpack $x as (e, f) in f[e]) in
X+ X

The wrapper (i.e. x =...) is handed off to the lazy runtime.

This is the same idea as how strict unboxed types are introduced,
in Haskell compiler's core.
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The intermediate language must include:
» closed functions
» strict data
P strict let-expressions
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depends on a notion of valid future heaps.

» Partial closure-conversion allows us to capture closures and still be
lazy.

Future work:
» Elaborate heap-based reasoning about memoization.

» Explore practical benefits of partial closure-conversion.

Non-strict closures are strict.
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